Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 
 
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space.

Output

For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5 大意:方格地图上有一些点用 '*' 表示,一个椭圆可以覆盖两个相邻的点(上下左右),问最少用多少椭圆能覆盖所有点 解法:每个 '*' 拆为两个点,能够同时覆盖的点连边,构成二分图,跑一边匹配。
要使用的椭圆数='*'总数 - 匹配数 + floor(匹配数/2)
原因:匹配数/2为 要求每个椭圆覆盖两个'*'时 能够使用的最大椭圆数。
这样覆盖后还剩下(总数 - 匹配数)个'*',对于每个剩下的'*',只能再使用一个椭圆。 提交三次
第一次选错编译器,第二次邻接表没有清空
第三次
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
int read(){
int xx=,ff=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')ff=-;ch=getchar();}
while(ch>=''&&ch<=''){xx=(xx<<)+(xx<<)+ch-'';ch=getchar();}
return xx*ff;
}
const int ws_[]={-,,,},ad_[]={,,,-};
int H,W,T,id[][],tx,ty,sum,ans;
char mp[][];
int lin[],len;
struct edge{
int next,y;
}e[];
inline void insert(int xx,int yy){
e[++len].next=lin[xx];
lin[xx]=len;
e[len].y=yy;
}
int vis[],tim,pretim,match[];
bool hun(int x){
for(int i=lin[x];i;i=e[i].next)
if(vis[e[i].y]<=pretim){
vis[e[i].y]=++tim;
if(match[e[i].y]==||hun(match[e[i].y])){
match[e[i].y]=x;
match[x]=e[i].y;
return ;
}
}
return ;
}
int main(){
//freopen("in","r",stdin);
//freopen("out","w",stdout);
T=read();
while(T--){
H=read(),W=read();
for(int i=;i<=H;i++){
for(int j=;j<=W;j++)
mp[i][j]=getchar(),id[i][j]=(i-)*W+j;
getchar();
}
len=;
memset(lin,,sizeof(lin));
for(int i=;i<=H;i++)
for(int j=;j<=W;j++)
if(mp[i][j]=='*')
for(int k=;k<;k++){
tx=i+ws_[k],ty=j+ad_[k];
if(tx<=||tx>H||ty<=||ty>W)
continue;
if(mp[tx][ty]=='*')
insert(id[i][j],id[tx][ty]+H*W);
}
tim=;sum=;ans=;
memset(vis,,sizeof(vis));
memset(match,,sizeof(match));
for(int i=;i<=H;i++)
for(int j=;j<=W;j++)
if(mp[i][j]=='*'){
sum++;
pretim=tim;
vis[id[i][j]]=++tim;
if(hun(id[i][j]))
ans++;
}
printf("%d\n",sum-ans+ans/);
}
return ;
}

 
 

POJ3020 二分图匹配——最小路径覆盖的更多相关文章

  1. POJ 1422 Air Raid(二分图匹配最小路径覆盖)

    POJ 1422 Air Raid 题目链接 题意:给定一个有向图,在这个图上的某些点上放伞兵,能够使伞兵能够走到图上全部的点.且每一个点仅仅被一个伞兵走一次.问至少放多少伞兵 思路:二分图的最小路径 ...

  2. UVA 1201 - Taxi Cab Scheme(二分图匹配+最小路径覆盖)

    UVA 1201 - Taxi Cab Scheme 题目链接 题意:给定一些乘客.每一个乘客须要一个出租车,有一个起始时刻,起点,终点,行走路程为曼哈顿距离,每辆出租车必须在乘客一分钟之前到达.问最 ...

  3. POJ 3020 Antenna Placement【二分匹配——最小路径覆盖】

    链接: http://poj.org/problem?id=3020 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  4. POJ:3020-Antenna Placement(二分图的最小路径覆盖)

    原题传送:http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS Memory Limit: 65536K Descri ...

  5. POJ 3020:Antenna Placement(无向二分图的最小路径覆盖)

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6334   Accepted: 3125 ...

  6. hdu3861 强连通分量缩点+二分图最最小路径覆盖

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  7. (匹配 最小路径覆盖)Air Raid --hdu --1151

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1151 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  8. POJ-1422 Air Raid---二分图匹配&最小路径覆盖

    题目链接: https://vjudge.net/problem/POJ-1422 题目大意: 有n个点和m条有向边,现在要在点上放一些伞兵,然后伞兵沿着图走,直到不能走为止 每条边只能是一个伞兵走过 ...

  9. POJ 1422 二分图(最小路径覆盖)

    Air Raid Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7278   Accepted: 4318 Descript ...

随机推荐

  1. Linux下Shell脚本运行程序不输出日志到终端

    使用: 脚本路径/脚本名 >/dev/>& 说明: 可以简单的理解/dev/null是Linux下的回收站 >默认是把标准输出重定向 2>&1是把出错输出也定向 ...

  2. 【Todo】C++类 & 通用面试题分析记录 & 最难的bug

    1. the most difficult bug u fixed and how u solved this problem.. 解决过很多疑难bug.最困难的分为两类.一类是并发.多线程类的,因为 ...

  3. IE浏览器打不开解决的方法

    windows 7和windows 8上的IE浏览器打不开.非常可能是权限问题,解决的方法: 点击"開始"-"执行",输入"regedit" ...

  4. 读取xml生成lua測试代码

    #include <iostream> #include <string> #include <fstream> #include "tinyxml2.h ...

  5. JS判断访问设备(userAgent)加载不同页面 JS判断客户端操作系统类型(platform)

    //平台.设备和操作系统 var system ={ win : false, mac : false, xll : false }; //检测平台 var p = navigator.platfor ...

  6. npoi 加密 https://bbs.csdn.net/topics/380226272

    终于解决了,.1.用excel新建一个文件作为模板,可以是空内容,在excel中对文件进行加密,如密码为:12345. 2.在NPOI读取前,调用:Biff8EncryptionKey.Current ...

  7. 【转载】TCP的三次握手(建立连接)和四次挥手(关闭连接)

    建立连接: 理解:窗口和滑动窗口TCP的流量控制 TCP使用窗口机制进行流量控制 什么是窗口? 连接建立时,各端分配一块缓冲区用来存储接收的数据,并将缓冲区的尺寸发送给另一端 接收方发送的确认信息中包 ...

  8. [WF4.0 实战] 事件驱动应用

    看到题目或许非常多人都会疑问,为什么要使用事件监听呢? 眼下的认识: 1,使用事件监听能够将工作流的结点返回值返回到client 2,能够实现等待与重新启动,相当于之前的WaitActivity创建B ...

  9. Javascript中没有引用传递,只有按值传递

    很多人,包括我,受书本知识消化不彻底的影响,认为 JS 中参数有两种传递方式:数字.字符串等按值传递:数组.对象等按地址(引用)传递.对此种观点,我们要谨慎. var v1 = [] var v2 = ...

  10. postgres SQL编译过程

    PG启动首先完成主进程和后台进程的启动,启动时完成数据库文件的打开,共享内存的建立等.接着,所有SQL都会启动1个单独的进程处理SQL的执行过程. 新的进程首先是进行自身的初始化,最主要的是初始化内存 ...