Spark学习之RDD编程(2)
Spark学习之RDD编程(2)
1. Spark中的RDD是一个不可变的分布式对象集合。
2. 在Spark中数据的操作不外乎创建RDD、转化已有的RDD以及调用RDD操作进行求值。
3. 创建RDD:1)读取一个外部数据集2)在驱动器程序里分发驱动器程序中的对象集合。
4. RDD支持的操作:
1)转换操作,由一个RDD生成一个新的RDD。
2)行动操作,对RDD进行计算结果,并把结果返回到驱动器程序中,或者把结果存储到外部存储系统(如HDFS)。
5. Spark程序或者shell会话都会按如下方式工作:
1)从外部数据创建出输入RDD。
2)使用诸如filter()这样的转化操作对RDD进行转化,以定义一个新的RDD。
3)告诉Spark对需要被重用的中间结果RDD执行persist()操作。
4)使用行动操作 (例如count()和first()等)来触发一次并行计算,Spark会对计算进行优化后在执行。
6. 创建RDD
快速创建RDD,把程序中一个已有的集合传给SparkContext的parallelize()方法,不过这种方法除了开发原型和测试时,这种方式用的并不多。
Python中的parallelize()方法
lines = sc.parallelize(["pandas","i like pandas"])
Scala中的parallelize()方法
val lines = sc.parallelize(List("pandas","i like pandas"))
Java中的parallelize()方法
JavaRDD<String> lines = sc.parallelize(Arrays.asList("pandas","i like pandas"))
7. 惰性求值
RDD的转化操作都是惰性求值的。
8. 向Spark传递函数
8.1 Python
传递比较短的函数,使用lambda表达式来传递;也可以传递顶层函数或是定义的局部函数。
8.2 Scala,可以定义的内联函数、方法的引用或静态方法传递给Spark,就行Scala的其他函数式API一样。
8.3 Java,函数需要作为实现了Spark的org.apache.spark.api.java.function包中的任一函数接口的对象来传递。
9. 常见的转化操作和行动操作
9.1 针对个元素的转化操作
flatmap() 对每个输入元素生成多个输出元素。
map() 接受一个函数,把这个函数用于RDD中的每个元素,将函数的返回结果作为结果RDD中的对应元素的。返回的类型不必和输入类型相同。
filter() 接受一个函数,并将RDD中满足该函数的元素放入新RDD中返回。
distinct() 去重
sample(withReplacement,fraction,[seed]) 对RDD采样,以及是否替换
9.2 伪集合操作
合并和相交要求RDD数据类型相同。
(不需混洗)union() 生成一个包含两个RDD中所有元素的RDD
(需要混洗)intersection() 求两个RDD共同的元素的RDD
(需要混洗)subtract() 移除一个RDD中的内容
(需要混洗)cartesian)() 与另一个RDD的笛卡尔积
Spark学习之RDD编程(2)的更多相关文章
- Spark学习之RDD编程总结
Spark 对数据的核心抽象——弹性分布式数据集(Resilient Distributed Dataset,简称 RDD).RDD 其实就是分布式的元素集合.在 Spark 中,对数据的所有操作不外 ...
- Spark学习笔记——RDD编程
1.RDD——弹性分布式数据集(Resilient Distributed Dataset) RDD是一个分布式的元素集合,在Spark中,对数据的操作就是创建RDD.转换已有的RDD和调用RDD操作 ...
- Spark学习(2) RDD编程
什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.弹性.里面的元素可并行计算的集合 RDD允 ...
- 02、体验Spark shell下RDD编程
02.体验Spark shell下RDD编程 1.Spark RDD介绍 RDD是Resilient Distributed Dataset,中文翻译是弹性分布式数据集.该类是Spark是核心类成员之 ...
- Spark学习之RDD
RDD概述 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合 ...
- spark实验(四)--RDD编程(1)
一.实验目的 (1)熟悉 Spark 的 RDD 基本操作及键值对操作: (2)熟悉使用 RDD 编程解决实际具体问题的方法. 二.实验平台 操作系统:centos6.4 Spark 版本:1.5.0 ...
- Spark学习摘记 —— RDD行动操作API归纳
本文参考 参考<Spark快速大数据分析>动物书中的第三章"RDD编程",前一篇文章已经概述了转化操作相关的API,本文再介绍行动操作API 和转化操作API不同的是, ...
- spark 中的RDD编程 -以下基于Java api
1.RDD介绍: RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动 ...
- spark学习(10)-RDD的介绍和常用算子
RDD(弹性分布式数据集,里面并不存储真正要计算的数据,你对RDD的操作,他会在Driver端转换成Task,下发到Executor计算分散在多台集群上的数据) RDD是一个代理,你对代理进行操作,他 ...
随机推荐
- MySQL JDBC URL参数(转)
MySQL的 JDBC URL格式: jdbc:mysql://[host][,failoverhost...][:port]/[database] » [?propertyName1][=prope ...
- java开发中涉及到的调优
JVM内存的调优 默认的Java虚拟机的大小比较小,在对大数据进行处理时java就会报错:java.lang.OutOfMemoryError. 1. Heap设定与垃圾回收Java Heap分为3个 ...
- Servlet表单数据处理
以下内容引用自http://wiki.jikexueyuan.com/project/servlet/form-data.html: 当需要从浏览器到Web服务器传递一些信息并最终传回到后台程序时,一 ...
- MongoDB小结14 - find【查询条件$lt $lte $gt $gte】
$lt $lte $gt $gte 以上四个分别表示为:< . <= . > . >= . 通常的做法是将他们组合起来,以便查找一个范围. 比如,查询年龄在18到25岁(含)的 ...
- Oracle数据库导入导出简单备份
oracle数据库简单备份 方法一: 1.导出 exp c##xmq/pwda@orcl owner=c##xmq file=C:/expdb.dmp buffer=8000 2.导入 2.1.删除原 ...
- 2014-8-21的一次性能诊断--应用server瓶颈
今天现场实施反馈系统总体慢.已经接到用户许多的投诉,要求现场发回weblogic日志和Oracle 数据库报告.简要说下系统的架构:典型的B/S三层架构,开发语言是java,中间件用的是weblogi ...
- HDU 1231——最大连续子序列(DP)
最大连续子序列 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Su ...
- 经典面试题回答——学习Java基础的目的
本系列知识解释:相信每个学习Java的人都是从JavaSE開始的,也就是Java基础開始. 可是却并不清楚学习Java基础究竟有什么用? 首先我来回答这个问题,学习Java基础是有两个目 ...
- 第二步:将LAD结果的属性值二(多)值化,投入计算模型
一文详解LDA主题模型 - 达观数据 - SegmentFault 思否 https://segmentfault.com/a/1190000012215533 SELECT COUNT(1) FRO ...
- [翻译]NUnit---String && Collection && File && Directory Assert (七)
StringAssert (NUnit 2.2.3) StringAssert类提供一系列检查字符串的方法. CollectionAssert (NUnit 2.4 / 2.5) Collection ...