方法就是枚举,根据b0和b1可以大大减小枚举范围,方法类似这个http://blog.csdn.net/hehe_54321/article/details/76021615

将b0和b1都分解质因数。记b0的某一质因数x的指数为a,b1中x的指数为b。如果a>b,那么显然对于这组b0和b1不可能有答案;如果a=b,那么ans中的x的指数可以为0到a的任意一个数;如果a<b,那么ans中x的指数只能为b。

举例:

$$
\begin{array}{l|l}
b0=37 & b1=1776 \\
\hline
37 & =37^1*3^0*2^0 \\
ans & =37^x*3^1*2^4 \\
1776 & =37^1*3^1*2^4 \\
\hline
b0=37&b1=1776 \\
96 & =3^1*2^5 \\
ans & =3^2*2^y\\
288 & =3^2*2^5
\end{array}
$$

x表示0-1的任何数,y表示0-5的任何数。这样子就可以得出所有可能的ans,然后再验证其与a0的gcd是否是a1即可。

注意:

1.像我这样写,需要特判1,因为对1分解质因数会得到1,对其他数分解都不会出现这个1。

2.曾经写了假的分解质因数,结果T掉了...真的分解质因数(要打质数表)还是要记一下。

 %:pragma GCC optimize()
#include<cstdio>
#include<cmath>
#include<cstring>
#include<map>
#include<set>
using namespace std;
typedef int LL;
LL prime[];
bool vis[];
LL ans0[],ans1[];
map<LL,LL> ma;
map<LL,LL>::iterator it;
set<LL>::iterator it2;
set<LL> se;
LL temp[][];
LL size,anss;
LL a0,a1,b0,b1,T;
LL gcd(LL a,LL b)
{
LL t;
while(b!=)
{
t=a;
a=b;
b=t%b;
}
return a;
}
LL pow2(LL x,LL y)
{
LL base=x,ans=;
while(y>)
{
if(y&) ans*=base;
base*=base;
y>>=;
}
return ans;
}
void dprime(LL n,LL ans[])
{
LL i;
LL end=floor(sqrt(n+0.5));
for(i=;prime[i]<=end;i++)
while(n!=prime[i])
{
if(n%prime[i]==)
{
if(ma.count(prime[i])==)
ma[prime[i]]=++size;
ans[ma[prime[i]]]++;
n/=prime[i];
}
else
break;
}
if(ma.count(n)==)
ma[n]=++size;
ans[ma[n]]++;
}
int main()
{ LL ii,i,j,d,dd,d1,d2;
for(i=;i<=;i++)
{
if(!vis[i]) prime[++prime[]]=i;
for(j=;j<=prime[]&&i*prime[j]<=;j++)
{
vis[i*prime[j]]=;
if(i%prime[j]==) break;
}
}
scanf("%d",&T);
while(T--)
{
memset(ans0,,sizeof(ans0));
memset(ans1,,sizeof(ans1));
se.clear();anss=;
ma.clear();size=;
scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
dprime(b0,ans0);
dprime(b1,ans1);
if(ma.count()==) ans0[ma[]]=,ans1[ma[]]=;
ii=;
memset(temp[],,sizeof(temp[]));
temp[][]=;
temp[][]=;
for(it=ma.begin();it!=ma.end();it++)
{
ii^=;
memset(temp[ii],,sizeof(temp[ii]));
d=it->second;
dd=it->first;
d1=ans0[d];
d2=ans1[d];
if(d1>d2)
{
puts("");
goto xxx;
}
else if(d1==d2)
{
for(i=;i<=temp[ii^][];i++)
for(j=;j<=d2;j++)
temp[ii][++temp[ii][]]=temp[ii^][i]*pow2(dd,j);
}
else
{
for(i=;i<=temp[ii^][];i++)
temp[ii][++temp[ii][]]=temp[ii^][i]*pow2(dd,d2);
}
}
for(i=;i<=temp[ii][];i++)
se.insert(temp[ii][i]);
for(it2=se.begin();it2!=se.end();it2++)
{
if(gcd(*it2,a0)==a1)
anss++;
}
printf("%d\n",anss);
xxx:;
}
return ;
}

假的分解质因数:

void dprime(int n,int ans[])
{
int i;
for(i=;i<=n;i++)
while(n!=i)
{
if(n%i==)
{
if(ma.count(i)==)
ma[i]=++size;
ans[ma[i]]++;
n/=i;
}
else
break;
}
if(ma.count(n)==)
ma[n]=++size;
ans[ma[n]]++;
}

额外的方法:

设x=a1*a2;a0=a1*a3;x*b2=b1;b0*b3=b1;

则a1*a2*b2=b1

又a1是x和a0的最大公约数,所以a2和a3互质。

又b1是x和b0的最小公倍数,所以b2和b3互质。

所以a2和a0/a1,b2和b1/b0互质。

因为a1*a2*b2=b1

所以a2*b2=b1/a1

因此a2,b2是b1/a1的因子,只需枚举并且判断是否与a3,b3互质即可。

https://www.luogu.org/wiki/show?name=%E9%A2%98%E8%A7%A3+P1072

洛谷 P1072 Hankson 的趣味题 || 打质数表的分解质因数的更多相关文章

  1. 洛谷 P1072 Hankson 的趣味题 解题报告

    P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\( ...

  2. 洛谷P1072 Hankson 的趣味题

    P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...

  3. Java实现洛谷 P1072 Hankson 的趣味题

    P1072 Hankson 的趣味题 输入输出样例 输入 2 41 1 96 288 95 1 37 1776 输出 6 2 PS: 通过辗转相除法的推导 import java.util.*; cl ...

  4. 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)

    洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...

  5. 洛谷P1072 Hankson 的趣味题(题解)

    https://www.luogu.org/problemnew/show/P1072(题目传送) 数学的推理在编程的体现越来越明显了.(本人嘀咕) 首先,我们知道这两个等式: (a0,x)=a1,[ ...

  6. 洛谷 P1072 Hankson 的趣味题

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...

  7. [NOIP2009] 提高组 洛谷P1072 Hankson 的趣味题

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...

  8. 洛谷P1072 Hankson的趣味题

    这是个NOIP原题... 题意: 给定 a b c d 求 gcd(a, x) = b && lcm(c, x) = d 的x的个数. 可以发现一个朴素算法是从b到d枚举,期望得分50 ...

  9. 洛谷 - P1072 Hankson - 的趣味题 - 质因数分解

    https://www.luogu.org/problemnew/show/P1072 一开始看了一看居然还想放弃了的. 把 \(x,a_0,a_1,b_0,b_1\) 质因数分解. 例如 \(x=p ...

随机推荐

  1. mvn -v 报错解决办法

    由于近期公司需求,我找到了个maven教程:http://wentao365.iteye.com/blog/903396 安装maven其实很简单,就是在Apache官网下载需要的maven包,然后配 ...

  2. 如何删除ini文件中的内容

    1.删除子项值:::WritePrivateProfileString(分区名称, 子项名称, "", ini文件路径); 2.删除子项(名称和值):::WritePrivateP ...

  3. CentOS笔记-常用网络命令

    1.curl & wget 使用curl或wget命令,不用离开终端就可以下载文件.如你用curl,键入curl -O后面跟一个文件路径.wget则不需要任何选项.下载的文件在当前目录. cu ...

  4. Hadoop spark mongo复制集

    启动hadoop cd /usr/local/hadoop/hadoop $hadoop namenode -format # 启动前格式化namenode $./sbin/start-all.sh ...

  5. 【独立开发人员er Cocos2d-x实战 007】使用Cocos2dx UserDefault.xml

    这篇博客是因为下述问题产生的 -(代码1): std::string str = FileUtils::getInstance()->getWritablePath(); CCLOG(str.c ...

  6. SVN回滚机制

    引子 工作中遇到一个新同事提交代码时不知怎么的出现了大面积的代码覆盖,由于对SVN也不是特别了解,就看着别人处理问题,自己也验证性的实践了一下,总结一下. 总结 svn每一次提交成功,都会有一个`编号 ...

  7. 使用Windows Debugger调试托管代码----引用自官方帮助文档

    以下文字引用在Windbg的帮助文档.觉得对初次调试托管代码,非常有用,故粘贴至此. ========================================================= ...

  8. MYSQL初级学习笔记三:数据的操作DML!(视频序号:初级_24,25,36)

    知识点五:数据的操作DML(24,25,36) 插入数据: --测试插入记录INSERT CREATE TABLE IF NOT EXISTS user13( id TINYINT UNSIGNED ...

  9. JavaScript SHA-1

    1. [文件] webtoolkit.sha1.js ~ 4KB     /****  Secure Hash Algorithm (SHA1)*  http://www.huiyi8.com/css ...

  10. hdu 4268 Alice and Bob(贪心+multiset)

    题意:卡牌覆盖,每张卡牌有高(height)和宽(width).求alice的卡牌最多可以覆盖多少bob的卡牌 思路:贪心方法就是找h可以覆盖的条件下找w最大的去覆盖. #include<ios ...