tarjan 割点 割边
by GeneralLiu
tarjan 求 割点 割边
无向图 的 割点 割边:
tarjan 是基于 dfs树 的算法
所以, dfs树 上的一些 术语有必要知道 一下
so 看我 博客
与 有向图的tarjan算法 非常类似
割边 的 求法 (这个一步就判断出来,先写容易的):
在 dfs树 上 后向边 一定不是 割边
如果是 树边(from u,to v) // 对应 下文 代码 20 行
且 low [ v ] > dfn [ u ] // 对应 下文 代码 24,25 行
则 是割边
割点 的 求法 :
如果是 dfs树 的 根节点
且 有不止一个儿子 则 是割点 // 对应 下文 代码 33,34 行
不是根
如果 u 存在子节点 v // 对应 下文 代码 28,29 行
使 low[v] >= dfn[u]
那么u为割点
代码
与 有向图的tarjan代码 非常类似
#include<iostream>
#include<cstdio>
using namespace std;
#define N 1000
#define M 2000
int dfn[N],low[N],cnt,n,m,head[N],to[M],next[M];
bool cutnode[N],cutedge[M];
void add(int x,int y){
next[++cnt]=head[x];
to[cnt]=y;
head[x]=cnt;
}
void dfs(int fa,int u){
dfn[u]=low[u]=++cnt;
int v,ch=;
bool b=;
for(int i=head[u];i;i=next[i]){
v=to[i];
if(v==fa)continue;
if(!dfn[v]){ // 树边
ch++;
dfs(u,v);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u]) // 判断 割边
cutedge[(i+)>>]=; // 无向图边存了两遍 如此来定位 边的编号
}
else low[u]=min(low[u],dfn[v]);
if(low[v]>=dfn[u]) // 判断 割点
b=;
}
if(dfn[u]!=) // 讨论 u 是否 为根 分别处理
cutnode[u]=b;
else if(ch>=)
cutnode[u]=;
}
int main(){
scanf("%d%d",&n,&m);
for(int x,y,i=;i<=m;i++){
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
for(int i=;i<=n;i++)
if(!dfn[i])
cnt=,dfs(,i);
for(int i=;i<=n;i++) // 输出 割点
if(cutnode[i])
printf("%d ",i);
printf("\n");
for(int i=;i<=m;i++) // 输出 割边
if(cutedge[i])
printf("%d ",i);
return ;
}
tarjan 割点 割边的更多相关文章
- Tarjan 割点割边【模板】
#include <algorithm> #include <cstring> #include <cstdio> using namespace std; +); ...
- 【学习整理】Tarjan:强连通分量+割点+割边
Tarjan求强连通分量 在一个有向图中,如果某两点间都有互相到达的路径,那么称中两个点强联通,如果任意两点都强联通,那么称这个图为强联通图:一个有向图的极大强联通子图称为强联通分量. 算法可以在 ...
- 求割点 割边 Tarjan
附上一般讲得不错的博客 https://blog.csdn.net/lw277232240/article/details/73251092 https://www.cnblogs.com/colle ...
- tarjan求割边割点
tarjan求割边割点 内容及代码来自http://m.blog.csdn.net/article/details?id=51984469 割边:在连通图中,删除了连通图的某条边后,图不再连通.这样的 ...
- Tarjan算法 (强联通分量 割点 割边)
变量解释: low 指当前节点在同一强连通分量(或环)能回溯到的dfn最小的节点 dfn 指当前节点是第几个被搜到的节点(时间戳) sta 栈 vis 是否在栈中 ans 指强连通分量的数量 top ...
- Tarjan算法与割点割边
目录 Tarjan算法与无向图的连通性 1:基础概念 2:Tarjan判断割点 3:Tarjan判断割边 Tarjan算法与无向图的连通性 1:基础概念 在说Tarjan算法求解无向图的连通性之前,先 ...
- 图的连通性——Tarjan算法&割边&割点
tarjan算法 原理: 我们考虑 DFS 搜索树与强连通分量之间的关系. 如果结点 是某个强连通分量在搜索树中遇到的第⼀个结点,那么这个强连通分量的其余结点肯定 是在搜索树中以 为根的⼦树中. 被称 ...
- {part2}DFN+LOW(tarjan)割边
首先非树边肯定不是割边,因为去掉它DFS树不受影响,只要还能生成一棵DFS树那么图就是连通的. 然后割掉一条树边只可能造成一个点与它的父亲不连通. 那好办,也就是说这个以这个点为根的子树就是上面所说的 ...
- 【NOIP训练】【Tarjan求割边】上学
题目描述 给你一张图,询问当删去某一条边时,起点到终点最短路是否改变. 输入格式 第一行输入两个正整数,分别表示点数和边数.第二行输入两个正整数,起点标号为,终点标号为.接下来行,每行三个整数,表示有 ...
随机推荐
- 找规律 Codeforces Round #309 (Div. 2) A. Kyoya and Photobooks
题目传送门 /* 找规律,水 */ #include <cstdio> #include <iostream> #include <algorithm> #incl ...
- oracle如何实现函数、包、存储过程加密
首先创建一个名称为test1.sql的文件: CREATE OR REPLACE FUNCTION get_date_string RETURN VARCHAR2 AS BEGIN RETURN TO ...
- java单元测试注释执行顺序
JUnit4通过注解的方式来识别测试方法.目前支持的主要注解有: @BeforeClass 全局只会执行一次,而且是第一个运行 @Before 在测试方法运行之前运行 @Test 测试方法 @Afte ...
- solr之~模糊查询【转】
solr之~模糊查询 有的时候,我们一开始不可能准确地知道搜索的关键字在 Solr 中查询出的结果是什么,因此,Solr 还提供了几种类型的模糊查询.模糊匹配会在索引中对关键字进行非精确匹配.例如,有 ...
- Anaconda(miniconda)安装及使用--转
https://www.waitalone.cn/anaconda-install-error.html 3,224 1.Anaconda概述 Anaconda是一个用于科学计算的 ...
- jQuery Ajax使用实例
<script src="http://cdn.bootcss.com/jquery/1.11.2/jquery.js"></script> <scr ...
- CF792C Divide by Three
思路: dp. 实现: #include <iostream> #include <cstdio> #include <cstring> #include < ...
- Android 实现对多个EditText的监听
create_account=(EditText)findViewById(R.id.create_account); create_password=(EditText)findViewById(R ...
- spring中for循环中事务
1.需求:批量插入一批数据,不用spring jdbc的批处理,用for循环插入数据. 2.遇到的问题:在for循环中,当一个插入不成功,前面插入成功的数据也将回滚. 3.初始设计:在service中 ...
- Asp.Net MVC之 自动装配、动态路径(链接)等
一.Model层 using System; using System.Collections.Generic; using System.Linq; using System.Web; namesp ...