https://cloud.tencent.com/developer/article/1118159

http://ruder.io/multi-task/

https://arxiv.org/abs/1706.05098

两种深度学习 MTL 方法

1、Hard 参数共享

在实际应用中,通常通过在所有任务之间共享隐藏层,同时保留几个特定任务的输出层来实现。

共享 Hard 参数大大降低了过拟合的风险。这很直观:我们同时学习的工作越多,我们的模型找到一个含有所有任务的表征就越困难,而过拟合我们原始任务的可能性就越小。

2、Soft 参数共享

在软参数共享中,每个任务都有单独的模型,每个模型包含各自的参数。模型参数之间的距离会作为正则项来保证参数尽可能相似。

Why does MTL work?

我们假设我们有两个相关的任务A和B,依赖一个共享的隐藏层表示F。

1、Implicit data augmentation

MTL可以有效增加用于模型训练的样本量。由于所有任务难免会有一些噪声,当我们在任务A上训练模型, 我们的目标是学习针对任务A的一个好的表示,可以完全避免依赖数据的噪音,而且泛化效果好。由于不同的任务有不同的噪声模式,一个自动学习两个任务的模型能够学习一个更加泛化的表示。只学习A任务有风险对任务A有过拟合风险,但是把A和B联合起来学习能够通过平均噪声模式使得模型获得一个更好的表示F。

2、Attention focusing

如果一个任务数据中噪声非常多或者数据较少而且高维,模型很难辨别相关特征和不相关特征。由于MTL中其他任务也可以提供辨别特征是否相关的依据,所以可以帮助模型将注意力集中在那些真正起作用的特征上。

3、Eavesdropping

某些特征G对于任务B来说容易学习,但是对于任务A来说较难学习。这可能是因为任务A中特征以更复杂的方式作用或者其他特征阻碍了模型学习G。通过MTL,我们允许模型偷听,也就是说通过任务B来学习G。最简单的方式就是通过hints,也就是直接训练模型来学习最重要的特征。

4、Representation bias

MTL中会使模型偏向于使用其他任务也倾向的表示。这也使得模型在未来的新任务上有更好的泛化能力,因为在足够数量任务上表现较好的假设空间也会在新任务上表现较好,毕竟这些任务都是在相同的环境中。

哪些辅助任务是有帮助的?

在本节中,我们讨论了可用于 MTL 的不同辅助任务,即使我们只关心一个任务。然而,我们仍然不知道什么辅助任务在实际中是有用的。寻找辅助任务主要是基于一种假设,即认为辅助任务与主任务有某种相关性,并且有助于预测主任务。

然而,我们仍然不知道什么时候两个任务应该被认为是相似或相关的。Caruana(1997)定义如果两个任务使用相同的特征作判断,那么这两个任务是相似的。Baxter(2000)认为理论上相关的任务共享一个共同的最优假设类,即具有相同的归纳偏置。[50] 提出,如果两个任务的数据可以使用一个从一组分布变换 F 得到的固定概率分布生成,那么两个任务是 F-相关的。虽然这允许对不同传感器收集的相同分类问题的数据的任务进行推理,例如用不同角度和照明条件的相机得到的数据进行对象识别,这不适用于处理不同问题的任务。Xue 等人(2007)讨论,如果两个任务的分类边界即参数向量接近,则两个任务是相似的。

在理解任务相关性方面,尽管有这些早期的理论进展,但实践中还没有太多进展。任务相似度不是二进制的,而是在一个频谱范围内。MTL 中,更多的相似任务有更大的作用,而较少的相似任务相反。允许我们的模型学习如何分享每个任务,可能使我们能够暂时避开理论的缺失,并更好利用即使是松散相关的任务。然而,我们还需要制定一个有关任务相似性的原则概念,以便了解我们应该选择哪些任务。

最近的工作 [52] 发现了标签满足紧凑且均匀分布的辅助任务,这适用于 NLP 中的序列标签问题,并且已经在实验中(Ruder 等人,2017)得到证实。此外已经发现,主任务更有可能快速达到高峰平稳(plateau),而辅助任务不容易达到高峰平稳 [53]。

然而,这些实验迄今在范围上受到限制,最近的发现仅提供了加深对神经网络中多任务学习理解的启发式线索。

深度神经网络多任务学习(Multi-Task Learning in Deep Neural Networks)的更多相关文章

  1. [译]深度神经网络的多任务学习概览(An Overview of Multi-task Learning in Deep Neural Networks)

    译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI.为了达到这个目标,我 ...

  2. (转)Understanding, generalisation, and transfer learning in deep neural networks

    Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017   Thi ...

  3. This instability is a fundamental problem for gradient-based learning in deep neural networks. vanishing exploding gradient problem

    The unstable gradient problem: The fundamental problem here isn't so much the vanishing gradient pro ...

  4. Coursera, Deep Learning 1, Neural Networks and Deep Learning - week4, Deep Neural Networks

    Deep Neural Network Getting your matrix dimention right 选hyper-pamameter 完全是凭经验 补充阅读: cost 函数的计算公式: ...

  5. 【论文笔记】多任务学习(Multi-Task Learning)

    1. 前言 多任务学习(Multi-task learning)是和单任务学习(single-task learning)相对的一种机器学习方法.在机器学习领域,标准的算法理论是一次学习一个任务,也就 ...

  6. 为什么深度神经网络难以训练Why are deep neural networks hard to train?

    Imagine you're an engineer who has been asked to design a computer from scratch. One day you're work ...

  7. 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第四周:深层神经网络(Deep Neural Networks)-课程笔记

    第四周:深层神经网络(Deep Neural Networks) 4.1 深层神经网络(Deep L-layer neural network) 有一些函数,只有非常深的神经网络能学会,而更浅的模型则 ...

  8. 吴恩达《深度学习》-课后测验-第一门课 (Neural Networks and Deep Learning)-Week 4 - Key concepts on Deep Neural Networks(第四周 测验 – 深层神经网络)

    Week 4 Quiz - Key concepts on Deep Neural Networks(第四周 测验 – 深层神经网络) \1. What is the "cache" ...

  9. 课程一(Neural Networks and Deep Learning),第四周(Deep Neural Networks)—— 0.学习目标

    Understand the key computations underlying deep learning, use them to build and train deep neural ne ...

随机推荐

  1. Spring Boot + Mybatis + Druid 动态切换多数据源

    在大型应用程序中,配置主从数据库并使用读写分离是常见的设计模式. 在Spring应用程序中,要实现读写分离,最好不要对现有代码进行改动,而是在底层透明地支持. 这样,就需要我们再一个项目中,配置两个, ...

  2. 开启和连接mysql服务器(win10为例)

    1.windows图标右键,选择“计算机管理”: 2.展开左边的“ 服务和应用程序” 选项,点击“服务",找到 MySQL 服务器,点击左侧的 "启动",即可完成 MyS ...

  3. GIMP矩形选框预圆形选框

    矩形选框,四种框选模式,了解一下 Repalace the current selector Add to the current selection (shift键) Subtract from t ...

  4. perl 对ENV环境变量的使用

    1.hash 方式访问. %ENV  key为环境变量名,value为环境变量值 2.调用ENV模块 . use Env qw(PATH); print "path is $ENV{path ...

  5. shell-code-6-输入输出重定向

    解释: 1. 文件描述符0通常是标准输入(STDIN,终端),1 是标准输出(STDOUT,终端),2 是标准错误输出(STDERR). 2. 如果希望 stderr 追加到 file 文件末尾,可以 ...

  6. c++ 快速幂 代码实现

    懒得打代码系列… 不过这个代码挺短的死背下来也ok 解析在最下面 建议自己手动试个数据理解一下 比如 3^5 ^^ 原理:a ^ b = a ^ (b / 2) * 2 (b是奇数的话还要再乘一个a) ...

  7. git 打补丁,即git review之后需要二次修改并提交代码

    假如代码已经push上去了,可是当review时,发现有地方需要修改,你可以继续在本地修改你的文件,之后git status查看修改的文件,然后git add修改的文件,此时不能直接git commi ...

  8. Yii2.0 添加分类category model类

    <?php namespace app\models; use yii\db\ActiveRecord; use Yii; use yii\helpers\ArrayHelper; class ...

  9. [automator学习篇]android 接口-- bluetooth

    http://www.android-doc.com/guide/topics/connectivity/bluetooth.html 本地下载的sdk 目录:     D:\AndroidSdk\s ...

  10. 菜鸡的2017CPPC网络赛

    Friend-Graph Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...