https://www.zybuluo.com/ysner/note/1300249

题面

给一棵大小为\(n\)的树,树的每个叶子节点上有权值。

定义一颗树平衡:对于每一个结点\(u\)的子树都拥有相同的权值之和。

问至少要减掉多少权值才能使树平衡。

  • \(n\leq 10^5\)

解析

这题想了半天。。。

一开始的想法是\(dfs\)一遍,回溯时每个点把其所有子树减到其最小子树大小。

然而立即发现我是个**,这会影响子树内的平衡。

如果把一个点的权值定义为它子树内的权值和,

在一个子树内,所有的点都减去同一个值,才不会影响其平衡。

所以如果要在一个点减小其权值,一减就要减它所有儿子权值的\(lcm\)。

为了使当前点平衡,我们需要使其所有子树大小相等。

为了使以后的修改可行,当然要使所有子树大小都为\(lcm\)的倍数。

如果一个儿子大小小于\(lcm\),说明不能保留子树。

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define ll long long
#define re register
#define il inline
#define pb(a) push_back(a)
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int N=1e5+100;
int n,m,h[N],cnt,tag=1;
ll w[N],ans,sz[N],dp[N],s;
struct Edge{int to,nxt;}e[N<<1];
il void add(re int u,re int v){e[++cnt]=(Edge){v,h[u]};h[u]=cnt;}
il int gi()
{
re int x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
ll lcm(re ll a,re ll b)
{
if(a*b>1e18+5e17) return tag=0,1;
return a/__gcd(a,b)*b;
}
il void dfs(re int u,re int fa)
{
dp[u]=w[u],sz[u]=1;re int Son=0;
for(re int i=h[u];i+1;i=e[i].nxt)
{
re int v=e[i].to;
if(v==fa) continue;
++Son;
dfs(v,u);
sz[u]=lcm(sz[u],sz[v]);
dp[u]+=dp[v];
}
for(re int i=h[u];i+1;i=e[i].nxt)
{
re int v=e[i].to;
if(v==fa) continue;
dp[u]=min(dp[u],dp[v]-dp[v]%sz[u]);
}
if(!Son) Son=1;
dp[u]*=Son;sz[u]*=Son;
}
int main()
{
memset(h,-1,sizeof(h));
n=gi();
fp(i,1,n) w[i]=gi(),s+=w[i];
fp(i,1,n-1)
{
re int u=gi(),v=gi();
add(u,v);add(v,u);
}
dfs(1,0);
printf("%lld\n",s-dp[1]);
return 0;
}

[CF348B]Apple Tree的更多相关文章

  1. POJ 2486 Apple Tree

    好抽象的树形DP......... Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6411 Accepte ...

  2. poj 3321:Apple Tree(树状数组,提高题)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 5629 Descr ...

  3. poj 3321 Apple Tree dfs序+线段树

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K       Description There is an apple tree outsid ...

  4. [poj3321]Apple Tree(dfs序+树状数组)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26762   Accepted: 7947 Descr ...

  5. POJ 3321 Apple Tree(树状数组)

                                                              Apple Tree Time Limit: 2000MS   Memory Lim ...

  6. 【HDU 4925】BUPT 2015 newbie practice #2 div2-C-HDU 4925 Apple Tree

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=102419#problem/C Description I’ve bought an or ...

  7. POJ 3321 Apple Tree(DFS序+线段树单点修改区间查询)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25904   Accepted: 7682 Descr ...

  8. URAL 1018 Binary Apple Tree(树DP)

    Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a bina ...

  9. POJ3321 Apple Tree (树状数组)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 16180   Accepted: 4836 Descr ...

随机推荐

  1. 10-看图理解数据结构与算法系列(B+树)

    B+树 B+树是B树的一种变体,也属于平衡多路查找树,大体结构与B树相同,包含根节点.内部节点和叶子节点.多用于数据库和操作系统的文件系统中,由于B+树内部节点不保存数据,所以能在内存中存放更多索引, ...

  2. [bzoj3668][Noi2014][起床困难综合症] (按位贪心)

    Description 21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争.通过研究相关文献,他找 ...

  3. 24L01-2.4G无线传输模块调节记录

    在调试24L01的时候,虽然能用到别人的程序,但仅仅是程序的初始化,并没有告诉我们如何去后续的操作,如何去再次发送一组数.最近调试24L01接近尾声,将逐一的地方总结下来,以便以后查阅,也供其他人借鉴 ...

  4. 【Codeforces 231C】To Add or Not to Add

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 把数组排个序, 显然优先用大的且小于枚举的数字a[i]的数字变成a[i] 那么肯定有一个范围j. 然后a[j~i-1]都能在k花费以内变成a[ ...

  5. 自动生成 serialVersionUID 的设置

    1 把鼠标放在类名上,会出现小灯泡的形状 点击 Add ‘serialVersionUID’ field... 即可生成 如果鼠标放在类名上没有出现 Add ‘serialVersionUID’ fi ...

  6. hihoCoder 必须吐槽hihoCoder的一点 (¯Д¯)ノ

    代码输入窗口太小,mac下经常误操作:双指滑动浏览器后退 而且输入框不会自动保存,一不小心后退一下,啥都..都没了...码了好久的代码就没了..遇到不止一次了 (  ̄ .  ̄ ) (゜ ロ゜;) ( ̄ ...

  7. noip模拟赛 仓库

    分析:非常像货车运输那道题.先求一下最大生成树.求完之后会发现并不好处理.通常这类求生成树的题目不会就分析kruscal算法的性质.每往最大生成树中加一条边,如果配重大于这条边权,那么这条边所连的两个 ...

  8. linux程序分析工具

    ldd和nm是Linux下两个非常实用的程序分析工具.ldd是用来分析程序运行时需要依赖的动态链接库的工具,nm是用来查看指定程序中的符号表信息的工具,objdump用来查看源代码与汇编代码,-d只查 ...

  9. ***XAMPP:报错 Unable to load dynamic library的解决方法

    A PHP Error was encountered Severity: Core Warning Message: PHP Startup: Unable to load dynamic libr ...

  10. hunnu - 11545 小明的烦恼——找路径 (最大流)

    http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11545 只是要求不经过相同的边,那么每次找出一条增广路T-- ...