[UOJ311]积劳成疾


题解
dp
似乎这个最大值不好设计状态啊==
但是可以发现这\(n\)个点每个点都是相同的
可以设计状态\(f_{i,j}\)表示一个长度为\(i\)的一段区间的最大值不会超过\(j\)的价值
那么转移就类似于区间\(DP\),先枚举长度,再枚举最大值,然后再暴力枚举一个位置表示这个最大值最靠右的位置,然后计算这个最大值跨过这个区间的贡献即可
\(f_{i,j}=f_{i,j-1}+\sum_{k=1}^{i}{f_{k-1,j} \times f_{i-k,j - 1} \times p_{j}^{有几个长度为m的区间跨过了这个最大值}}\)
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
const int M = 405 ;
const int mod = 998244353 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
}
int n , m ;
int val[M][M] , f[M][M] ;
inline int T(int len , int k) {
int l = max(1 , k - m + 1) , r = min(len , k + m - 1) ;
return max(r - l - m + 2 , 0) ;
}
int main() {
n = read() ; m = read() ;
for(int i = 1 ; i <= n ; i ++) {
val[i][0] = 1 ; val[i][1] = read() ;
for(int j = 2 ; j <= n ; j ++)
val[i][j] = 1LL * val[i][j - 1] * val[i][1] % mod ;
}
for(int i = 0 ; i <= n ; i ++) f[0][i] = 1 ;
for(int i = 1 ; i <= n ; i ++)
for(int j = 1 ; j <= n ; j ++) {
f[i][j] = f[i][j - 1] ;
for(int k = 1 ; k <= i ; k ++)
f[i][j] = (f[i][j] + 1LL * f[k - 1][j] * f[i - k][j - 1] % mod * val[j][T(i , k)] % mod) % mod ;
}
printf("%d\n",f[n][n]) ;
return 0 ;
}
[UOJ311]积劳成疾的更多相关文章
- uoj311 【UNR #2】积劳成疾
传送门:http://uoj.ac/problem/311 [题解] 这题的期望dp好神奇啊(可能是我太菜了) 由于每个位置都完全一样,所以我们设$f_{i,j}$表示审了连续$i$个位置,最大值不超 ...
- 【UOJ#311】【UNR #2】积劳成疾(动态规划)
[UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[ ...
- [UOJ UNR #2]积劳成疾
来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 区间最大值的题emmmm 想到构建笛卡尔树,这样自然就想到了一种dp f[i][j]表示大小为i的笛卡尔树,根的权值是j的答案. 转移 ...
- UOJ.311.[UNR#2]积劳成疾(DP)
UOJ 序列中的每个位置是等价的.直接令\(f[i][j]\)表示,\(i\)个数的序列,最大值不超过\(j\)的所有序列每个长为\(k\)的子区间最大值的乘积的和. 由\(j-1\)转移到\(j\) ...
- UOJ #311「UNR #2」积劳成疾
需要锻炼$ DP$能力 UOJ #311 题意 等概率产生一个长度为$ n$且每个数在[1,n]间随机的数列 定义其价值为所有长度为$ k$的连续子数列的最大值的乘积 给定$ n,k$求所有合法数列的 ...
- A. 【UNR #2】积劳成疾
链接:http://uoj.ac/contest/40/problem/311 题解: 一道很好的期望题吧 用dp的老思路,枚举最大值将序列分割 想到这个就很简单了 状态f[i][j]表示前i个,最大 ...
- 【uoj#311】[UNR #2]积劳成疾 dp
题目描述 一个长度为 $n$ 的序列,每个数在 $[1,n]$ 之间.给出 $m$ ,求所有序列的 $\prod_{i=1}^{n-m+1}(\text{Max}_{j=i}^{j+m-1}a[j]) ...
- uoj#311. 【UNR #2】积劳成疾(期望dp)
传送门 果然\(dp\)题就没咱啥事儿了 设\(f_{i,j}\)为长度为\(i\)的区间,所有元素的值不超过\(j\)的总的疲劳值 如果\(j\)没有出现过,那么\(f_{i,j}=f_{i,j-1 ...
- uoj#311 【UNR #2】积劳成疾
题目 考虑直接顺着从\(1\)填数填到\(n\)发现这是在胡扯 所以考虑一些奇诡的东西,譬如最后的答案长什么样子 显然某一种方案的贡献是一个\(\prod_{i=1}^nw_i^{t_i}\)状物,\ ...
随机推荐
- 【Nginx】基本数据结构
整型的封装 typedef intptr_t ngx_int _t;//有符号整型 typedef uintptr_t ngx_uint_t;//无符号整型 字符串的封装 typedef struct ...
- 【algorithm】尾递归
尾递归和一般的递归不同在对内存的占用,普通递归创建stack累积而后计算收缩,尾递归只会占用恒量的内存(和迭代一样).SICP中描述了一个内存占用曲线,用以上答案中的Python代码为例(普通递归): ...
- Android 使用 DownloadManager 管理系统下载任务的方法
在红黑联盟上看到的.这几天一直考虑做一个Notification 的带下载功能的自己定义通知.但没搞出来.无意中在论坛看到这个.先Mark,明天试试. 从Android 2.3(API level 9 ...
- vector draw 试用期结束的 激活方法
[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Licenses\DBEA4D42-0745-428e-B17A-A5B6CA3AB34B] 把这个注冊表给删 了
- Mac下Git项目使用的.gitignore文件
https://www.gitignore.io/ 这个网站可以搜索特定项目.系统所需要的.gitignore 我现在主要是在Mac上用Visual Studio Code进行开发,所以直接搜索Mac ...
- BC1.2的一些心得
什么叫DCD DataContact Detect(DCD) 1.首先是DCD 2.然后是Primary detection 3.然后是Secondary detection 检測充电的条件是VBUS ...
- aspx后台引用不到服务器控件
从其他地方拷贝的页面到自己的项目,后台CS代码引用hidden时,提示找不到,百度,发现可能是网站项目和Web应用程序的区别,右键aspx转化为Web应用程序即可.
- 2016/4/5 Ajax ①用户名 密码 登陆 注册 ② 判断用户名是否已存在 ③点击按钮出现民族选项下拉菜单 ④DBDA类 加入Ajaxquery方法 数组变字符串 字符串拆分
①登陆 注册 查表匹配 0405Ajax.php ②判断用户名是否存在 <!DOCTYPE html> <html lang="en"> ...
- druid 参考配置
mysql <!-- 配置druid连接池 --> <context:property-placeholder location="classpath:jdbc.prope ...
- What Is the Linux Lokkit Utility? https://www.lifewire.com/what-is-lokkit-2192255
lokkit: The Lokkit utility attempts to provide firewalling for the average Linux end user. Instead o ...