题目传送门

 /*
题意:汉诺塔问题变形,多了第四个盘子可以放前k个塔,然后n-k个是经典的汉诺塔问题,问最少操作次数
递推+高精度+找规律:f[k]表示前k放在第四个盘子,g[n-k]表示经典三个盘子,2 ^ (n - k) - 1
所以f[n] = min (f[k] * 2 + g[n-k]),n<=10000,所要要用高精度,另外打表能看出规律
*/
/************************************************
* Author :Running_Time
* Created Time :2015-8-18 9:14:21
* File Name :UVA_10254.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int MAXN = + ;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + ; struct bign {
short s[MAXN] , len ;
bign () { memset ( s , , sizeof ( s ) ) ; len = ; }
bign operator = (const char *num) {
len = strlen ( num ) ;
for ( int i = ; i < len ; i ++ ) s[i] = num[len-i-] - '' ;
return *this ;
}
bign operator = (int num) {
char s[MAXN];
sprintf (s , "%d" , num);
*this = s ;
return *this ;
}
bign(const char *num) { *this = num ; }
bign(int num) { *this = num ; }
string str () const {
string res ;
res = "" ;
for (int i = ; i < len; i ++) res = (char) (s[i] + '') + res ;
if (res == "") res = '';
return res ;
}
bign operator + (const bign& b) const {
bign c ;
c.len = ;
for(int i = , g = ; g || i < max (len, b.len); i ++) {
int x = g ;
if (i < len) x += s[i] ;
if (i < b.len) x += b.s[i] ;
c.s[c.len++] = x % ;
g = x / ;
}
return c ;
}
void print() {
for(int i = len - ; i >= ; i --) printf("%hd", s[i]);
printf("\n");
}
}f[]; int main(void) { //UVA 10254 The Priest Mathematician
bign g = ; f[] = ;
for (int i=, j=; i<=; j++, g=g+g) {
for (int k=; k<=j && i<=; k++,i++) {
f[i] = f[i-] + g;
}
}
int n;
while (scanf ("%d", &n) == ) {
f[n].print ();
} return ;
}

递推+高精度+找规律 UVA 10254 The Priest Mathematician的更多相关文章

  1. POJ 2229 Sumsets(递推,找规律)

    构造,递推,因为划分是合并的逆过程,考虑怎么合并. 先把N展开成全部为N个1然后合并,因为和顺序无关,所以只和出现次数有关情况有点多并且为了避免重复,分类,C[i]表示序列中最大的数为2^i时的方案数 ...

  2. HDU 4291 A Short problem 短问题 (递推,找规律)

    题意: 给出递推式 g(n) = 3g(n - 1) + g(n - 2),且g(1) = 1,g(0) = 0.求g( g( g(n))) mod 109 + 7. 思路: 要求的g( g( g(n ...

  3. UVA 10254 - The Priest Mathematician (dp | 汉诺塔 | 找规律 | 大数)

    本文出自   http://blog.csdn.net/shuangde800 题目点击打开链接 题意: 汉诺塔游戏请看 百度百科 正常的汉诺塔游戏是只有3个柱子,并且如果有n个圆盘,至少需要2^n- ...

  4. PKU 2506 Tiling(递推+高精度||string应用)

    题目大意:原题链接有2×1和2×2两种规格的地板,现要拼2×n的形状,共有多少种情况,首先要做这道题目要先对递推有一定的了解.解题思路:1.假设我们已经铺好了2×(n-1)的情形,则要铺到2×n则只能 ...

  5. [luogu]P1066 2^k进制数[数学][递推][高精度]

    [luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...

  6. BZOJ 1002 FJOI2007 轮状病毒 递推+高精度

    题目大意:轮状病毒基定义如图.求有多少n轮状病毒 这个递推实在是不会--所以我选择了打表找规律 首先执行下面程序 #include<cstdio> #include<cstring& ...

  7. 【BZOJ】1002: [FJOI2007]轮状病毒 递推+高精度

    1002: [FJOI2007]轮状病毒 Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同 ...

  8. [BZOJ1089][SCOI2003]严格n元树(递推+高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...

  9. bzoj 1002 [FJOI2007]轮状病毒 高精度&&找规律&&基尔霍夫矩阵

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2234  Solved: 1227[Submit][Statu ...

随机推荐

  1. 深入理解 C 指针阅读笔记 -- 第六章

    Chapter6.h #ifndef __CHAPTER_6_ #define __CHAPTER_6_ /*<深入理解C指针>学习笔记 -- 第六章*/ typedef struct _ ...

  2. 关于Python中正则表达式的反斜杠问题

    之前总是搞不明白正则表达式中的反斜杠的问题.今天经过查阅资料终于搞明白了. 其中最重要的一点就是Python自己的字符串中定义的反斜杠也是转义字符,而正则表达式中的反斜杠也是转义字符,所以正则表达式中 ...

  3. 使用Blender批量导出/转换模型

    2.4版本号的Blender API和2.5以上版本号的API有非常大的不同,这里仅仅是提供了思路和2.4版本号的导出方案. 先提供一个脚本,这个是由Blender调用的.用于转换Ogre的Mesh文 ...

  4. serverSpeed是一个android手机端到服务器间udp/tcp对比测速软件

    https://github.com/eltld/serverSpeed https://github.com/c-wind/serverSpeed https://github.com/PeterK ...

  5. udhcp源码详解(四) 之租赁IP的管理

    Server端对于租赁出去的IP的管理是基于结构体dhcpOfferedAddr的,该结构体的定义是在leases.c文件里:(结构体的成员介绍说明见详解之数据结构) 1: struct dhcpOf ...

  6. Python标准库:内置函数complex([real[, imag]])

    本函数能够使用參数real + imag*j方式创建一个复数.也能够转换一个字符串的数字为复数:或者转换一个数字为复数.假设第一个參数是字符串,第二个參数不用填写.会解释这个字符串且返回复数.只是,第 ...

  7. 扩展HtmlHelper

    eg3:扩展HtmlHelper                                扩展方法类 1 public static class HtmlExtension 2 { 3 /// ...

  8. ASP.NET for WebApi

    WebApi,听说过吧?呵呵. 感觉比WebService,WCF要强.尤其是那个啥WCF,啥鬼东西,真难懂.真难搞.真难用. 说比WebService要强,是因为不用在本地先生成个代理.而且XML也 ...

  9. Revit插件开发HelloWorld

    1. 使用 VS2012 先建立一个项目. 2. 在这里我们选择建立C# 类库项目, 改动项目名称为HelloWorld. 能够自己定义改动项目存放路径. 3. 加入 Revit 插件 API 的引用 ...

  10. 蓝牙4.0 BLE 广播包解析

    在使用EN-Dongle捕获和解析广播包之前,我们先了解一下BLE报文的结构,之后,再对捕获的广播包进行分析.在学习BLE的时候,下面两个文档是极其重要的,这是SIG发布的蓝牙的核心协议和核心协议增补 ...