课程四(Convolutional Neural Networks),第三 周(Object detection) —— 1.Practice questions:Detection algorithms











【解释】
tree的两个bounding boxes 都要保留,因为交并比小于0.5;car 0.73保留;pedestrain 0.98保留;motorcycle 0.58保留。一共5个。

【解释】
5个anchor box, 一个anchor box 对应(1+4+20)个标签,所以output volume 是 19*19*5*25
课程四(Convolutional Neural Networks),第三 周(Object detection) —— 1.Practice questions:Detection algorithms的更多相关文章
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 3.Programming assignments:Convolutional Model: application
Convolutional Neural Networks: Application Welcome to Course 4's second assignment! In this notebook ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 2.Programming assignments:Convolutional Model: step by step
Convolutional Neural Networks: Step by Step Welcome to Course 4's first assignment! In this assignme ...
- 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals
Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...
- 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 2.Programming assignments : Keras Tutorial - The Happy House (not graded)
Keras tutorial - the Happy House Welcome to the first assignment of week 2. In this assignment, you ...
- 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) ——3.Programming assignments : Residual Networks
Residual Networks Welcome to the second assignment of this week! You will learn how to build very de ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 0.Learning Goals
Learning Goals Understand the convolution operation Understand the pooling operation Remember the vo ...
- 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 1.Practice questions
[解释] 应该是same padding 而不是 valid padding . [解释] 卷积操作用的应该是adding additional layers to the network ,而是应该 ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 1.Practice questions:The basics of ConvNets
[解释] 100*(300*300*3)+ 100=27000100 [解释] (5*5*3+1)*100=7600 [中文翻译] 您有一个输入是 63x63x16, 并 将他与32个滤波器卷积, 每 ...
- 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 2.Programming assignments:Art generation with Neural Style Transfer
Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In thi ...
- 课程四(Convolutional Neural Networks),第三 周(Object detection) —— 2.Programming assignments:Car detection with YOLOv2
Autonomous driving - Car detection Welcome to your week 3 programming assignment. You will learn abo ...
随机推荐
- 求树的重心 poj 1655
题目链接:https://vjudge.net/problem/POJ-1655 这个就是找树的重心,树的重心就是树里面找一个点,使得以这个点为树根的所有的子树中最大的子树节点数最小.题目应该讲的比较 ...
- F4 help for month
INCLUDE rmcs0f0m. s_month FOR s001-spmon NO-EXTENSION NO INTERVALS OBLIGATORY. AT SELECTION-SCREEN O ...
- 事件委托在ios下面失效
$(document).on("click","目标class",function(){ //安卓下点击可以,ios下面失效 }) 百度了下说是H5新定义的, ...
- Python开发——数据类型【列表】
列表的定义 中括号[]内以逗号分隔开,按照索引,存放各种数据类型,每个位置代表一个元素 list_t = ['张三','Lucy',123] print(list_t) # ['张三', 'Lucy' ...
- Win 10 安装手机驱动
直接上图,看图操作即可.
- @RemoteProxy()注释 与@File注释的使用
@RemoteProxy()注释 dwr3.0可以通过全注解的方式,极大的简化了配置,所有xml配置加在一起不超过20行,而且使用更加简单,bean注入的问题也都解决.配置步骤如下: web.xml的 ...
- 可遇不可求的Question之导入mysql中文乱码解决方法篇
可遇不可求的Question之导入mysql中文乱码解决方法篇 先 set names utf8;然后 source c:\1.sql ?
- nginx 502错误 upstream sent too big header while reading response header from upstream
原本的设置是 proxy_buffer_size 4k; proxy_buffers 4 32k; proxy_busy_buffers_size 64k; 在这种配置下,使用fiddler进行抓包分 ...
- [数据清洗]-Pandas 清洗“脏”数据(一)
概要 准备工作 检查数据 处理缺失数据 添加默认值 删除不完整的行 删除不完整的列 规范化数据类型 必要的转换 重命名列名 保存结果 更多资源 Pandas 是 Python 中很流行的类库,使用它可 ...
- jsapi微信支付
JSAPI微信支付 引用js <script type="text/javascript" src="http://res.wx.qq.com/open/js/jw ...