Problem

Description

你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。

在这个奖励关里,系统将依次随机抛出 \(k\) 次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。

宝物一共有n种,系统每次抛出这 \(n\) 种宝物的概率都相同且相互独立。也就是说,即使前 \(k-1\) 次系统都抛出宝物 \(1\)(这种情况是有可能出现的,尽管概率非常小),第 \(k\) 次抛出各个宝物的概率依然均为 \(\frac{1}{n}\)。

获取第 \(i\) 种宝物将得到 \(P_i\) 分,但并不是每种宝物都是可以随意获取的。第 \(i\) 种宝物有一个前提宝物集合 \(S_i\)。只有当 \(S_i\) 中所有宝物都至少吃过一次,才能吃第 \(i\) 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,\(P_i\) 可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。

假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?

Input Format

第一行为两个正整数 \(k\) 和 \(n\) ,即宝物的数量和种类。以下 \(n\) 行分别描述一种宝物,其中第一个整数代表分值,随后的整数依次代表该宝物的各个前提宝物(各宝物编号为 \(1\) 到 \(n\)),以 \(0\) 结尾。

Output Format

输出一个实数,保留六位小数,即在最优策略下平均情况的得分。

Sample

Input 1

1 2
1 0
2 0

Output 1

1.500000

Input 2

6 6
12 2 3 4 5 0
15 5 0
-2 2 4 5 0
-11 2 5 0
5 0
1 2 4 5 0

Output 2

10.023470

Range

\(1 \le k \le 100, 1 \le n \le 15\),分值为 \([-106,106]\) 内的整数。

Algorithm

\(DP\),状压

Mentality

如你所见,这题和概率期望几乎没什么关系。

容易得到一个状压 \(dp\) 的思路,那就是设 \(f[i][S]\) 代表已经选了 \(i\) 轮宝物,已选的宝物种类的集合为 \(S\) ,那么 \(dp\) 式子也就很简单了,即为 \(f[i][S]+=f[i-1][S\ xor\ (1<<(j-1))](j-1\in S)\),不过要保证 \(S\) 合法。同时因为有期望的要求,每种情况的概率都为 \(\frac{1}{n}\) ,则我们转移的时候还要除以 \(n\)。

因为有前缀选择的要求,所以状态 \(S\) 很难做到保证合法。此时我们应该考虑用一种特殊的方法来 \(dp\) ,那就是逆推。

和之前倒还是一样,设 \(f[i][S]\) 为第 \(i\) 轮集合为 \(S\) 的最大分数。不过我们改为倒推的方式进行,设 \(pre[i]\) 为 \(i\) 的前缀选择要求集合, \(dp\) 方程则变为:

\[pre[j]\in S\ \ f[i][S]+=\frac{max(f[i+1][S],f[i+1][S|(1<<(j-1)])}{n}
\]

\[pre[j]\notin S\ \ f[i][S]+=\frac{f[i+1][S]}{n}
\]

最后的答案则为 \(f[1][0]\) 。

Code

#include <cstdio>
#include <iostream>
using namespace std;
int n, K, pre[16], a[16];
double f[101][1 << 15];
int main() {
cin >> K >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i];
int x;
cin >> x;
for (; x; cin >> x) pre[i] |= (1 << (x - 1));
} //处理前缀要求的集合
for (int j = K; j >= 1; j--) //逆推
for (int S = 0; S < (1 << n); S++) {
for (int i = 1; i <= n; i++)
if ((S & pre[i]) == pre[i]) //如果满足要求,则可转移
f[j][S] += max(f[j + 1][S], f[j + 1][S | (1 << (i - 1))] + a[i]);
else
f[j][S] += f[j + 1][S];
f[j][S] /= n; //处理期望值
}
printf("%.6lf", f[1][0]);
}

【SCOI 2008】奖励关的更多相关文章

  1. [SCOI 2008] 奖励关

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1076 [算法] f[i][S]表示当前第i次抛出宝物,目前集合为S,所能获得的最高分 ...

  2. SCOI 2008 【奖励关】

    早上的考试一道都做不出,被教做人,心态爆炸ing...... 题目描述: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必 ...

  3. Bzoj1076 [SCOI2008]奖励关

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1935  Solved: 1053 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一 ...

  4. 【bzoj1076】[SCOI2008]奖励关

    题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...

  5. 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望

    [BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...

  6. 【BZOJ-1076】奖励关 概率与期望 + 状态压缩DP

    1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1602  Solved: 891[Submit][Status ...

  7. 【BZOJ】1076: [SCOI2008]奖励关(状压dp+数学期望)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压 ...

  8. 【BZOJ】【1076】【SCOI2008】奖励关

    状压DP+数学期望 蒟蒻不会啊……看题跑…… Orz了一下Hzwer,发现自己现在真是太水了,难道不看题解就一道题也不会捉了吗? 题目数据范围不大……100*(2^16)很容易就跑过去了…… DP的时 ...

  9. 1076: [SCOI2008]奖励关( dp )

    期望状压dp.... ------------------------------------------------------------------ #include<cstdio> ...

随机推荐

  1. vue的数据绑定和组件化

    组件:就是自定义标签, 也是Vue的实例对象; 组件好处:就像工作分工,函数封装等 组件分为全局组件和局部组件: 全局组件,在Vue身上的组件,所有的vue挂载的元素内都可以使用:正是因为这一点,co ...

  2. 一些方便系统诊断的bash函数

    原文地址:一些方便系统诊断的bash函数 一些方便系统诊断的bash函数:http://hongjiang.info/common-bash-functions/ 这段脚本包含100多个bash函数, ...

  3. 使用正则表达式进行某网页中的email邮箱抽取

    import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; impo ...

  4. 编译安装centos7 php7.2 mysql5.7 nginx1.9.9

    2018年3月12日 14:09:39 注意时效 centos7 网卡 cd /etc/sysconfig/network-scripts/ TYPE=Ethernet PROXY_METHOD=no ...

  5. (function(){…})(); 与 (function(){…}());

    从结果上来说,个人的意见是:他们是一样的.

  6. Nginx+Tomcat整合的安装与配置(win.linux)

    //原帖 http://zyjustin9.iteye.com/blog/2017394 上面是windows系统,linux直接下拉到分割线. 相信很多人都听过nginx,这个小巧的东西慢慢地在吞食 ...

  7. mimikaz常用命令

    常用命令,留着自己使用的时候方便查找 mimikatz是一款功能强大的轻量级调试神器,通过它你可以提升进程权限注入进程读取进程内存,当然他最大的亮点也是让阿刚最感兴趣的就是他可以直接从 lsass中获 ...

  8. spark-sql将Rdd转换为DataFrame进行操作的两种方法

    SparkConf sparkConf = new SparkConf() .setMaster("local").setAppName("ClzMap"); ...

  9. ssm中整合Mybatis可以扫描到放在mapper下面的xml文件的方法

    mybatis配置时出现org.apache.ibatis.binding.BindingException: Invalid bound statement (not found) 解决方法有两种: ...

  10. Python时间、日期、时间戳之间的转换

    一.字符串与为时间字符串之间的互相转换 方法:time模块下的strptime方法 a = "2012-11-11 23:40:00" # 字符串转换为时间字符串 import t ...