起源:协方差自然是由方差衍生而来的,方差反应的是一个变量(一维)的离散程度,到二维了,我们可以对每个维度求其离散程度,但我们还想知道更多。我们想知道两个维度(变量)之间的关系,直观的举例就是身高和体重(青少年),我们采集到的数据里面有一种固有的性质,那就是身高越高的样本似乎总有着更大的体重,那我们如何衡量这种关系呢,单独求两个方差是不行的。

因此协方差应运而生,它的公式也与方差极度同源,方差是每个样本减去均值的平方后去平均(n-1),协方差就把平方的2拆成1+1,就是x减去x的平均,乘以,y减去y的平均,最后对整体取平均。

这个公式似乎有点难以直观理解,先别管,先说结论。

该公式的另一种写法:

协方差的效果是:协方差的值如果为正值,则说明两者是正相关的 (数值越大,相关性越强),结果为负值就说明负相关的,如果为0,也是就是统计上说的“相互独立”。

再来说原理,如何直观的理解这个协方差公式能达到这种效果呢?

网上有篇文章讲得十分好,以下转载:

终于明白协方差的意义了

如果正相关,这个计算公式,每个样本对(Xi, Yi), 每个求和项大部分都是正数,即两个同方向偏离各自均值,而不同时偏离的也有,但是少,这样当样本多时,总和结果为正。下面这个图就很直观。下面转载自:http://blog.csdn.net/wuhzossibility/article/details/8087863

在概率论中,两个随机变量 X 与 Y 之间相互关系,大致有下列3种情况:

当 X, Y 的联合分布像上图那样时,我们可以看出,大致上有: X 越大  Y 也越大, X 越小  Y 也越小,这种情况,我们称为“正相关”。

当X, Y 的联合分布像上图那样时,我们可以看出,大致上有:X 越大Y 反而越小,X 越小 Y 反而越大,这种情况,我们称为“负相关”。

当X, Y  的联合分布像上图那样时,我们可以看出:既不是X  越大Y 也越大,也不是 X 越大 Y 反而越小,这种情况我们称为“不相关”。

怎样将这3种相关情况,用一个简单的数字表达出来呢?

在图中的区域(1)中,有 X>EX ,Y-EY>0 ,所以(X-EX)(Y-EY)>0;

在图中的区域(2)中,有 X<EX ,Y-EY>0 ,所以(X-EX)(Y-EY)<0;

在图中的区域(3)中,有 X<EX ,Y-EY<0 ,所以(X-EX)(Y-EY)>0;

在图中的区域(4)中,有 X>EX ,Y-EY<0 ,所以(X-EX)(Y-EY)<0。

当X 与Y 正相关时,它们的(联合)分布大部分在区域(1)和(3)中,小部分在区域(2)和(4)中,所以平均来说,有E(X-EX)(Y-EY)>0 。(可以从一维 x~N(μ,σ)的大部分的分布(-3σ-3σ)99.7%的区间取值来理解,当符合条件的X和Y区域都在这(1)(3)区间,X-EX和Y-EY的数值同大于0和小于0的居多,其乘积大于0(是一个三维立体型吧,会根据概率密度p(x)来决定该区域数值,),且其对应数值相乘(X-EX)(Y-EY)越大偏离越大)

当 X与 Y负相关时,它们的分布大部分在区域(2)和(4)中,小部分在区域(1)和(3)中,所以平均来说,有(X-EX)(Y-EY)<0 。

当 X与 Y不相关时,它们在区域(1)和(3)中的分布,与在区域(2)和(4)中的分布几乎一样多,所以平均来说,有(X-EX)(Y-EY)=0 。

所以,我们可以定义一个表示X, Y 相互关系的数字特征,也就是协方差
cov(X, Y) = E(X-EX)(Y-EY)。
当 cov(X, Y)>0时,表明 X与Y 正相关;

当 cov(X, Y)<0时,表明X与Y负相关;

当 cov(X, Y)=0时,表明X与Y不相关。

这就是协方差的意义。

另外补充:

1. 求特征协方差矩阵,如果数据是3维,那么协方差矩阵是

这里只有x和y,求解得

对角线上分别是x和y的方差,非对角线上是协方差。协方差大于0表示x和y若有一个增,另一个也增;小于0表示一个增,一个减;协方差为0时,两者独立。协方差绝对值越大,两者对彼此的影响越大,反之越小。
---------------------
作者:goodshot
来源:CSDN
原文:https://blog.csdn.net/GoodShot/article/details/79940438
版权声明:本文为博主原创文章,转载请附上博文链接!

从多个角度来理解协方差(covariance)的更多相关文章

  1. 方差variance, 协方差covariance, 协方差矩阵covariance matrix | scatter matrix | weighted covariance | Eigenvalues and eigenvectors

    covariance, co本能的想到双变量,用于描述两个变量之间的关系. correlation,相关性,covariance标准化后就是correlation. covariance的定义: 期望 ...

  2. 方差variance, 协方差covariance, 协方差矩阵covariance matrix

    https://www.jianshu.com/p/e1c8270477bc?utm_campaign=maleskine&utm_content=note&utm_medium=se ...

  3. 协方差Covariance的表述推导

    今天想了一下关于概率论的一维数据期望.方差以及高维数据的矩阵表示,突然想到为什么在一维中 方差的表示为:V(x) = E((x-E(x))2) 而到了高维,这样的表述就成了协方差呢?V(X) = E( ...

  4. 【概率论】4-6:协方差和相关性(Covariance and Correlation)

    title: [概率论]4-6:协方差和相关性(Covariance and Correlation) categories: - Mathematic - Probability keywords: ...

  5. Python3Numpy——相关性协方差应用

    基本理论 Correlation Are there correlations between variables? Correlation measures the strength of the ...

  6. PCA算法理解及代码实现

    github:PCA代码实现.PCA应用 本文算法均使用python3实现 1. 数据降维   在实际生产生活中,我们所获得的数据集在特征上往往具有很高的维度,对高维度的数据进行处理时消耗的时间很大, ...

  7. 《A First Course in Probability》-chaper7-期望的性质-期望的性质-协方差

    在实际的问题中,我们往往想要通过已有的数据来分析判断两个事件的发生是否有相关性.当然一个角度去寻找这两个事件内在的逻辑关系,这个角度需要深究两个事件的本质,而另外一个角度就是概率论提供的简单方法:基于 ...

  8. 学习笔记DL008:概率论,随机变量,概率分布,边缘概率,条件概率,期望、方差、协方差

    概率和信息论. 概率论,表示不确定性声明数学框架.提供量化不确定性方法,提供导出新不确定性声明(statement)公理.人工智能领域,概率法则,AI系统推理,设计算法计算概率论导出表达式.概率和统计 ...

  9. (转载)彻底的理解:WebService到底是什么?

    最近老是有人跟我提web service接口,怎么,怎么滴,我觉得很扎耳朵,web service是一种将服务器的服务封装起来的技术,表现为对外提供接口,所以,web service不是一种接口 !! ...

随机推荐

  1. Luogu 1098 - 字符串的展开 - [字符串操作][模拟]

    题目链接:https://www.luogu.org/problemnew/show/P1098 题目描述在初赛普及组的“阅读程序写结果”的问题中,我们曾给出一个字符串展开的例子:如果在输入的字符串中 ...

  2. 新手学习Linux之快速上手分析

    一.起步 首先,应该为自己创造一个学习linux的环境--在电脑上装一个linux或unix 问题1:版本的选择 北美用redhat,欧洲用SuSE,桌面mandrake较多,而debian是技术最先 ...

  3. Web开发——HTML基础(HTML表格 <table>)

    参考: 表格属性参考:http://www.w3school.com.cn/tags/tag_table.asp 目录: 1.举例 2.表格 2.1 表格属性 2.2 表格的表头 2.3 表格中的空单 ...

  4. java+tomcat开发环境搭建

    java+tomcat开发环境搭建 一.jdk环境变量设置 ...........这里省略n个字............. 二.tomcat环境变量设置 安装好tomcat后 1.新建环境变量: CA ...

  5. linux 进程间通信——内存共享映射mmap和munmap

    IPC三种通信机制是指:信号量.共享内存.消息队列,   信号量:通过操作系统中的PV操作来实现: 共享内存:申请一块内存,进程A往共享内存中写,其他的进程就可以通过读出共享内存中的内容来获取进程A所 ...

  6. IDEA eclipse转maven

    在pom.xml 文件上右键 Add as Maven Project

  7. python 中为什么不需要重载 参数*arg和**args

    函数重载主要是为了解决两个问题. (1)可变参数类型. (2) 可变参数个数. 另外,一个基本的设计原则是,仅仅当两个函数除了参数类型和参数个数不同以外,其功能是完全相同的,此时才使用函数重载,如果两 ...

  8. 在CentOS 7中安装与配置Tomcat-8.5方法

    安装说明 安装环境:CentOS-7 安装方式:源码安装 软件:apache-tomcat-8.5.39.tar.gz下载地址:http://tomcat.apache.org/download-80 ...

  9. Unity之流光效果

    效果如图: shader如下: Shader "Unlit/Walk light" { Properties { _MainTex ("Base (RGB), Alpha ...

  10. python 匿名函数捕获变量值 (执行时的值)