狄克斯特拉算法(Python实现)
概述
狄克斯特拉算法——用于在加权图中找到最短路径
ps:
- 广度优先搜索——用于解决非加权图的最短路径问题
- 存在负权边时——贝尔曼-福德算法
下面是来自维基百科的权威解释。
戴克斯特拉算法(英语:Dijkstra's algorithm,又译迪杰斯特拉算法)由荷兰计算机科学家艾兹赫尔·戴克斯特拉在1956年提出。戴克斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题。该算法存在很多变体;戴克斯特拉的原始版本找到两个顶点之间的最短路径,但是更常见的变体固定了一个顶点作为源节点然后找到该顶点到图中所有其它节点的最短路径,产生一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。举例来说,如果图中的顶点表示城市,而边上的权重表示城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。
该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想像成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s到 t 的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。
最初的戴克斯特拉算法不采用最小优先级队列,时间复杂度是{\displaystyle O(|V|^{2})}
(其中{\displaystyle |V|}
为图的顶点个数)。通过斐波那契堆实现的戴克斯特拉算法时间复杂度是{\displaystyle O(|E|+|V|\log |V|)}
(其中{\displaystyle |E|}
是边数) (Fredman & Tarjan 1984)。对于不含负权的有向图,这是当前已知的最快的单源最短路径算法。
Python实现:
# 创建图
graph = {}
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2
graph["a"] = {}
graph["a"]["fin"] = 1
graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["fin"] = 5
graph["fin"] = {}
print(graph) # {'start': {'a': 6, 'b': 2}, 'a': {'fin': 1}, 'b': {'a': 3, 'fin': 5}, 'fin': {}}
# 创建开销表
infinity = float("inf")
costs = {}
costs["a"] = 6
costs["b"] = 2
costs["fin"] = infinity
print(infinity, type(infinity))
# 创建父节点
parents = {}
parents["a"] = "start"
parents["b"] = "start"
parents["fin"] = None
# 用来记录处理过的节点
processed = []
def find_lower_cost_node(costs):
lowest_cost = float("inf")
lowest_cost_node = None
for node in costs:
cost = costs[node]
if cost < lowest_cost and node not in processed:
lowest_cost = cost
lowest_cost_node = node
return lowest_cost_node
node = find_lower_cost_node(costs)
while node is not None:
cost = costs[node]
neighbors = graph[node]
for n in neighbors.keys():
new_cost = cost + neighbors[n]
if costs[n] > new_cost:
costs[n] = new_cost
parents[n] = node
processed.append(node)
node = find_lower_cost_node(costs)
print(costs)
狄克斯特拉算法(Python实现)的更多相关文章
- 关于狄克斯特拉算法(dijkstra)总结
1,2,4是四个定点其他的是距离,从2到4最直接的就是2-4,但是不是最近的,需要舒展一下2-1-4,这样只有8.所以才是最短的.这个过程就是狄克斯特拉算法.下面进入正题: 我们这里定义图的编号为 ...
- 【算法】狄克斯特拉算法(Dijkstra’s algorithm)
狄克斯特拉算法(Dijkstra’s algorithm) 找出最快的路径使用算法——狄克斯特拉算法(Dijkstra’s algorithm). 使用狄克斯特拉算法 步骤 (1) 找出最便宜的节点, ...
- 狄克斯特拉(Dijkstra)算法
引入 从A点到B点的最短路径是什么?求最短路径的两种算法:Dijkstra算法和Floyd算法. 网图:带权图. 非网图最短路径:两顶点间经过的边数最少的路径.(非网图也可被理解为各边权值为1的网图. ...
- [算法导论]迪克斯特拉算法 @ Python
class Graph: def __init__(self): self.V = [] self.w = {} class Vertex: def __init__(self, x): self.k ...
- C++迪杰斯特拉算法求最短路径
一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...
- 迪杰斯特拉算法(Dijkstra) (基础dij+堆优化) BY:优少
首先来一段百度百科压压惊... 迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最 ...
- Java 迪杰斯特拉算法实现查找最短距离
迪杰斯特拉算法 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是 ...
- 算法-迪杰斯特拉算法(dijkstra)-最短路径
迪杰斯特拉算法(dijkstra)-最短路径 简介: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中 ...
- Python完成迪杰斯特拉算法并生成最短路径
def Dijkstra(network,s,d):#迪杰斯特拉算法算s-d的最短路径,并返回该路径和代价 print("Start Dijstra Path……") path=[ ...
随机推荐
- 论文阅读笔记三十八:Deformable Convolutional Networks(ECCV2017)
论文源址:https://arxiv.org/abs/1703.06211 开源项目:https://github.com/msracver/Deformable-ConvNets 摘要 卷积神经网络 ...
- Python3 zip() 函数
描述 zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象,这样做的好处是节约了不少的内存. 我们可以使用 list() 转换来输出列表. 如果 ...
- Python推荐系统库--Surprise理论
Surprise Surprise是scikit系列中的一个.Surprise的User Guide有详细的解释和说明 支持多种推荐算法 基础算法/baseline algorithms 基于近邻方法 ...
- 手机网页制作教程META标签你知道多少?【转+加】
一.天猫 <title>天猫触屏版</title> <meta content="text/html; charset=utf-8" http-equ ...
- MySQL 存储过程与事物
一:存储过程 存储过程可以说是一个记录集吧,它是由一些T-SQL语句组成的代码块,这些T-SQL语句代码像一个方法一样实现一些功能 存储过程的好处: 1.由于数据库执行动作时,是先编 ...
- expdp、impdp 使用sys用户操作时的注意事项
https://blog.csdn.net/ctypyb2002/article/details/78420711
- Doracle.jdbc.J2EE13Compliant=true
To make the Oracle driver behave in a Java EE-compliant manner, you must define the following JVM pr ...
- .Net开源网络爬虫Abot介绍(转)
转载地址:http://www.cnblogs.com/JustRun1983/p/abot-crawler.html .Net中也有很多很多开源的爬虫工具,abot就是其中之一.Abot是一个开源的 ...
- bat处理复制文件
1.建bat文件自动执行复制,删除命令. 复制cd.dll文件至windows\system32的bat文件内容: @echo offset JtlDir=D:\apache-jmeter-3.0\t ...
- mysql group_concat时间用法
第一张表的worksId在第二张表中对应多条数据,需要将每条数据的日期作为结果查询出来,一个作为“初审时间”,另一个作为“复审时间”: 可以使用group_concat 和 group by 来进行分 ...