Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的相似度越大。

算法实现原理图解:

a.首先是有两个字符串,这里写一个简单的 abc 和 abe

b.将字符串想象成下面的结构。

A 处 是一个标记,为了方便讲解,不是这个表的内容。

  abc a b c
abe 0 1 2 3
a 1 A处    
b 2      
e 3      

c.来计算 A 处 出得值

它的值取决于:左边的 1、上边的 1、左上角的 0。

按照 Levenshtein distance 的意思:

上面的值加 1 ,得到 1+1=2 ,

左面的值加 1 ,得到 1+1=2 ,

左上角的值根据字符是否相同,相同加 0 ,不同加 1 。A 处由于是两个 a 相同,左上角的值加 0 ,得到 0+0=0 。

然后从我们上面计算出来的 2,2,0 三个值中选取最小值,所以 A 处的值为 0 。

d.于是表成为下面的样子

  abc a b c
abe 0 1 2 3
a 1 0    
b 2 B处    
e 3      

在 B 处 会同样得到三个值,左边计算后为 3 ,上边计算后为 1 ,在 B 处 由于对应的字符为 a、b ,不相等,所以左上角应该在当前值的基础上加 1 ,这样得到 1+1=2 ,在(3,1,2)中选出最小的为 B 处的值。

e.于是表就更新了

  abc a b c
abe 0 1 2 3
a 1 0    
b 2 1    
e 3 C处    

C 处 计算后:上面的值为 2 ,左边的值为 4 ,左上角的:a 和 e 不相同,所以加 1 ,即 2+1 ,左上角的为 3 。

在(2,4,3)中取最小的为 C 处的值。

f.于是依次推得到

    a b c
  0 1 2 3
a 1 A处 0 D处 1 G处 2
b 2 B处 1 E处 0 H处 1
e 3 C处 2 F处 1 I处 1

I 处: 表示 abc 和 abe 有1个需要编辑的操作( c 替换成 e )。这个是需要计算出来的。

同时,也获得一些额外的信息:

A处: 表示a      和a       需要有0个操作。字符串一样

B处: 表示ab    和a       需要有1个操作。

C处: 表示abe  和a       需要有2个操作。

D处: 表示a      和ab     需要有1个操作。

E处: 表示ab    和ab     需要有0个操作。字符串一样

F处: 表示abe  和ab     需要有1个操作。

G处: 表示a      和abc   需要有2个操作。

H处: 表示ab    和abc   需要有1个操作。

I处: 表示abe   和abc    需要有1个操作。

g.计算相似度

先取两个字符串长度的最大值 maxLen,用 1-(需要操作数 除 maxLen),得到相似度。

例如 abc 和  abe  一个操作,长度为 3 ,所以相似度为 1-1/3=0.666 。

最近需要对文本内容进行对比计算相似度,找了很久还真的让我找到个现成的模块 python-Levenshtein ,这个模块用法直接用help看吧,我主要用到里面的distance和ratio,其它的暂时还不知道有什么功能。

字符串相似度算法-LEVENSHTEIN DISTANCE算法的更多相关文章

  1. 字符串相似度算法——Levenshtein Distance算法

    Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一 ...

  2. Levenshtein Distance算法(编辑距离算法)

    编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...

  3. Magic Number(Levenshtein distance算法)

    Magic Number Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  4. 字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)

    在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...

  5. 字符串相似度算法(编辑距离算法 Levenshtein Distance)

    在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录.据百度百科介绍:编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串 ...

  6. 用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)

    在搞验证码识别的时候需要比较字符代码的相似度用到"编辑距离算法",关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Dist ...

  7. [转]字符串相似度算法(编辑距离算法 Levenshtein Distance)

    转自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981 http://www.cnblogs.com/ivanyb/archi ...

  8. 编辑距离算法详解:Levenshtein Distance算法

    算法基本原理:假设我们可以使用d[ i , j ]个步骤(可以使用一个二维数组保存这个值),表示将串s[ 1…i ] 转换为 串t [ 1…j ]所需要的最少步骤个数,那么,在最基本的情况下,即在i等 ...

  9. 扒一扒编辑距离(Levenshtein Distance)算法

    最近由于工作需要,接触了编辑距离(Levenshtein Distance)算法.赶脚很有意思.最初百度了一些文章,但讲的都不是很好,读起来感觉似懂非懂.最后还是用google找到了一些资料才慢慢理解 ...

随机推荐

  1. 解决Chrome浏览器主页被hao123、360和2345篡改简单有效方法

    转自:https://blog.csdn.net/qq_32635971/article/details/72793115?locationNum=10&fps=1 当你打开浏览器看到各种首页 ...

  2. XOR+base64加密

    1.xor运算 1^0=1 0^0=0 1^1=0 23^32=55 55^32=23 23对32进行异或两次运算结果为23 2.XOR加密 设key=[]byte{1,2,3,4,5,6},src= ...

  3. Netty自带连接池的使用

    一.类介绍1.ChannelPool——连接池接口 2.SimpleChannelPool——实现ChannelPool接口,简单的连接池实现 3.FixedChannelPool——继承Simple ...

  4. Vxlan学习笔记——原理

    1. 为什么需要Vxlan 普通的VLAN数量只有4096个,无法满足大规模云计算IDC的需求,而IDC为何需求那么多VLAN呢,因为目前大部分IDC内部结构主要分为两种L2,L3.L2结构里面,所有 ...

  5. csv文件格式说明

    csv文件应用很广泛,历史也很悠久.有很多种类型的csv格式,常用的是rfc 4180定义的格式. csv文件包含一行或多行记录,每行记录中包含一个或多个字段.记录与记录之间使用换行符分隔,最后一个记 ...

  6. 三对角线性方程组(tridiagonal systems of equations)的求解

    三对角线性方程组(tridiagonal systems of equations)   三对角线性方程组,对于熟悉数值分析的同学来说,并不陌生,它经常出现在微分方程的数值求解和三次样条函数的插值问题 ...

  7. [转]window7下利用DockerToolbox安装Docker

    本文转自:https://blog.csdn.net/qq2712193/article/details/54576313 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blo ...

  8. [转]Angular CLI 安装和使用

    本文转自:https://www.jianshu.com/p/327d88284abb 一. 背景介绍: 两个概念: 关于Angular版本,Angular官方已经统一命名Angular 1.x统称为 ...

  9. c# 键值数据保存XML文件

    /// <summary> /// 键值数据保存XML文件 /// </summary> /// <param name="fileName"> ...

  10. Spark中master与worker的进程RPC通信实现

    1.构建master的actor package SparkRPC import akka.actor.{Actor, ActorSystem, Props}import com.typesafe.c ...