kafka的Java客户端示例代码(kafka_2.11-0.8.2.2)
1.使用Producer API发送消息到Kafka
从版本0.9开始被KafkaProducer替代。
HelloWorldProducer.java
package cn.ljh.kafka.kafka_helloworld; import java.util.Date;
import java.util.Properties;
import java.util.Random; import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig; public class HelloWorldProducer {
public static void main(String[] args) {
long events = Long.parseLong(args[0]);
Random rnd = new Random(); Properties props = new Properties();
//配置kafka集群的broker地址,建议配置两个以上,以免其中一个失效,但不需要配全,集群会自动查找leader节点。
props.put("metadata.broker.list", "192.168.137.176:9092,192.168.137.176:9093");
//配置value的序列化类
//key的序列化类key.serializer.class可以单独配置,默认使用value的序列化类
props.put("serializer.class", "kafka.serializer.StringEncoder");
//配置partitionner选择策略,可选配置
props.put("partitioner.class", "cn.ljh.kafka.kafka_helloworld.SimplePartitioner");
props.put("request.required.acks", "1"); ProducerConfig config = new ProducerConfig(props); Producer<String, String> producer = new Producer<String, String>(config); for (long nEvents = 0; nEvents < events; nEvents++) {
long runtime = new Date().getTime();
String ip = "192.168.2." + rnd.nextInt(255);
String msg = runtime + ",www.example.com," + ip;
KeyedMessage<String, String> data = new KeyedMessage<String, String>("page_visits", ip, msg);
producer.send(data);
}
producer.close();
}
}
SimplePartitioner.java
package cn.ljh.kafka.kafka_helloworld; import kafka.producer.Partitioner;
import kafka.utils.VerifiableProperties; public class SimplePartitioner implements Partitioner {
public SimplePartitioner (VerifiableProperties props) { } public int partition(Object key, int a_numPartitions) {
int partition = 0;
String stringKey = (String) key;
int offset = stringKey.lastIndexOf('.');
if (offset > 0) {
partition = Integer.parseInt( stringKey.substring(offset+1)) % a_numPartitions;
}
return partition;
} }
2.使用Kafka High Level Consumer API接收消息
ConsumerGroupExample.java
package cn.ljh.kafka.kafka_helloworld; import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector; import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit; public class ConsumerGroupExample {
private final ConsumerConnector consumer;
private final String topic;
private ExecutorService executor; public ConsumerGroupExample(String a_zookeeper, String a_groupId, String a_topic) {
consumer = kafka.consumer.Consumer.createJavaConsumerConnector(
createConsumerConfig(a_zookeeper, a_groupId));
this.topic = a_topic;
} public void shutdown() {
if (consumer != null) consumer.shutdown();
if (executor != null) executor.shutdown();
try {
if (!executor.awaitTermination(5000, TimeUnit.MILLISECONDS)) {
System.out.println("Timed out waiting for consumer threads to shut down, exiting uncleanly");
}
} catch (InterruptedException e) {
System.out.println("Interrupted during shutdown, exiting uncleanly");
}
} public void run(int a_numThreads) {
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, new Integer(a_numThreads));
Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic); // now launch all the threads
//
executor = Executors.newFixedThreadPool(a_numThreads); // now create an object to consume the messages
//
int threadNumber = 0;
for (final KafkaStream stream : streams) {
executor.submit(new ConsumerTest(stream, threadNumber));
threadNumber++;
}
} private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) {
Properties props = new Properties();
props.put("zookeeper.connect", a_zookeeper);
props.put("group.id", a_groupId);
props.put("zookeeper.session.timeout.ms", "400");
props.put("zookeeper.sync.time.ms", "200");
props.put("auto.commit.interval.ms", "1000"); return new ConsumerConfig(props);
} public static void main(String[] args) {
// String zooKeeper = args[0];
// String groupId = args[1];
// String topic = args[2];
// int threads = Integer.parseInt(args[3]); String zooKeeper = "192.168.137.176:2181,192.168.137.176:2182,192.168.137.176:2183";
String groupId = "group1";
String topic = "page_visits";
int threads = 5; ConsumerGroupExample example = new ConsumerGroupExample(zooKeeper, groupId, topic);
example.run(threads); try {
Thread.sleep(10000);
} catch (InterruptedException ie) { }
example.shutdown();
}
}
ConsumerTest.java
package cn.ljh.kafka.kafka_helloworld; import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream; public class ConsumerTest implements Runnable {
private KafkaStream m_stream;
private int m_threadNumber; public ConsumerTest(KafkaStream a_stream, int a_threadNumber) {
m_threadNumber = a_threadNumber;
m_stream = a_stream;
} public void run() {
ConsumerIterator<byte[], byte[]> it = m_stream.iterator();
//线程会一直等待有消息进入
while (it.hasNext())
System.out.println("Thread " + m_threadNumber + ": " + new String(it.next().message()));
System.out.println("Shutting down Thread: " + m_threadNumber);
}
}
3.使用kafka Simple Consumer API接收消息
SimpleConsumerExample.java
package cn.ljh.kafka.kafka_helloworld; import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.cluster.BrokerEndPoint;
import kafka.common.ErrorMapping;
import kafka.common.TopicAndPartition;
import kafka.javaapi.*;
import kafka.javaapi.consumer.SimpleConsumer;
import kafka.message.MessageAndOffset; import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/*
Why use SimpleConsumer?
The main reason to use a SimpleConsumer implementation is
you want greater control over partition consumption than Consumer Groups give you.
For example you want to:
1.Read a message multiple times
2.Consume only a subset of the partitions in a topic in a process
3.Manage transactions to make sure a message is processed once and only once
Downsides of using SimpleConsumer
The SimpleConsumer does require a significant amount of work not needed in the Consumer Groups:
1.You must keep track of the offsets in your application to know where you left off consuming.
2.You must figure out which Broker is the lead Broker for a topic and partition
3.You must handle Broker leader changes
Steps for using a SimpleConsumer
1.Find an active Broker and find out which Broker is the leader for your topic and partition
2.Determine who the replica Brokers are for your topic and partition
3.Build the request defining what data you are interested in
4.Fetch the data
5.Identify and recover from leader changes
You can change the following items if necessary.
1.Maximum number of messages to read (so we don’t loop forever)
2.Topic to read from
3.Partition to read from
4.One broker to use for Metadata lookup
5.Port the brokers listen on
*/
public class SimpleConsumerExample {
public static void main(String args[]) {
SimpleConsumerExample example = new SimpleConsumerExample(); //Maximum number of messages to read (so we don’t loop forever)
long maxReads = 500;
//Topic to read from
String topic = "page_visits";
//Partition to read from
int partition = 2;
//One broker to use for Metadata lookup
List<String> seeds = new ArrayList<String>();
seeds.add("192.168.137.176");
//Port the brokers listen on
List<Integer> ports = new ArrayList<Integer>();
ports.add(9092);
try {
example.run(maxReads, topic, partition, seeds, ports);
} catch (Exception e) {
System.out.println("Oops:" + e);
e.printStackTrace();
}
} private List<String> m_replicaBrokers = new ArrayList<String>();
private List<Integer> m_replicaPorts = new ArrayList<Integer>(); public SimpleConsumerExample() {
m_replicaBrokers = new ArrayList<String>();
m_replicaPorts = new ArrayList<Integer>();
} public void run(long a_maxReads, String a_topic, int a_partition, List<String> a_seedBrokers, List<Integer> a_ports) throws Exception {
// find the meta data about the topic and partition we are interested in
//
PartitionMetadata metadata = findLeader(a_seedBrokers, a_ports, a_topic, a_partition);
if (metadata == null) {
System.out.println("Can't find metadata for Topic and Partition. Exiting");
return;
}
if (metadata.leader() == null) {
System.out.println("Can't find Leader for Topic and Partition. Exiting");
return;
}
String leadBroker = metadata.leader().host();
int a_port = metadata.leader().port();
String clientName = "Client_" + a_topic + "_" + a_partition; SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
// kafka.api.OffsetRequest.EarliestTime() finds the beginning of the data in the logs and starts streaming from there
long readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.EarliestTime(), clientName); int numErrors = 0;
while (a_maxReads > 0) {
if (consumer == null) {
consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
}
// Note: this fetchSize of 100000 might need to be increased if large batches are written to Kafka
FetchRequest req = new FetchRequestBuilder()
.clientId(clientName)
.addFetch(a_topic, a_partition, readOffset, 100000)
.build(); FetchResponse fetchResponse = consumer.fetch(req); //Identify and recover from leader changes
if (fetchResponse.hasError()) {
numErrors++;
// Something went wrong!
short code = fetchResponse.errorCode(a_topic, a_partition);
System.out.println("Error fetching data from the Broker:" + leadBroker + " Reason: " + code);
if (numErrors > 5) break;
if (code == ErrorMapping.OffsetOutOfRangeCode()) {
// We asked for an invalid offset. For simple case ask for the last element to reset
readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.LatestTime(), clientName);
continue;
}
consumer.close();
consumer = null;
//查找新的leader
metadata = findNewLeader(leadBroker, a_topic, a_partition, a_port);
leadBroker = metadata.leader().host();
a_port = metadata.leader().port();
continue;
}
numErrors = 0; //Fetch the data
long numRead = 0;
for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) {
if(a_maxReads > 0){
long currentOffset = messageAndOffset.offset();
//This is needed since if Kafka is compressing the messages,
//the fetch request will return an entire compressed block even if the requested offset isn't the beginning of the compressed block.
if (currentOffset < readOffset) {
System.out.println("Found an old offset: " + currentOffset + " Expecting: " + readOffset);
continue;
}
readOffset = messageAndOffset.nextOffset();
ByteBuffer payload = messageAndOffset.message().payload(); byte[] bytes = new byte[payload.limit()];
payload.get(bytes);
System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8"));
numRead++;
a_maxReads--;
}
} //If we didn't read anything on the last request we go to sleep for a second so we aren't hammering Kafka when there is no data.
if (numRead == 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}
if (consumer != null) consumer.close();
} public static long getLastOffset(SimpleConsumer consumer, String topic, int partition,
long whichTime, String clientName) {
TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(
requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
OffsetResponse response = consumer.getOffsetsBefore(request); if (response.hasError()) {
System.out.println("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition) );
return 0;
}
long[] offsets = response.offsets(topic, partition);
return offsets[0];
} private PartitionMetadata findNewLeader(String a_oldLeader, String a_topic, int a_partition, int a_oldLeader_port) throws Exception {
for (int i = 0; i < 3; i++) {
boolean goToSleep = false;
PartitionMetadata metadata = findLeader(m_replicaBrokers, m_replicaPorts, a_topic, a_partition);
if (metadata == null) {
goToSleep = true;
} else if (metadata.leader() == null) {
goToSleep = true;
} else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) &&
a_oldLeader_port == metadata.leader().port() && i == 0) {
// first time through if the leader hasn't changed, give ZooKeeper a second to recover
// second time, assume the broker did recover before failover, or it was a non-Broker issue
//
goToSleep = true;
} else {
return metadata;
}
if (goToSleep) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}
System.out.println("Unable to find new leader after Broker failure. Exiting");
throw new Exception("Unable to find new leader after Broker failure. Exiting");
} private PartitionMetadata findLeader(List<String> a_seedBrokers, List<Integer> a_port, String a_topic, int a_partition) {
PartitionMetadata returnMetaData = null;
loop:
for (int i = 0; i < a_seedBrokers.size(); i++) {
String seed = a_seedBrokers.get(i);
SimpleConsumer consumer = null;
try {
consumer = new SimpleConsumer(seed, a_port.get(i), 100000, 64 * 1024, "leaderLookup");
List<String> topics = Collections.singletonList(a_topic);
TopicMetadataRequest req = new TopicMetadataRequest(topics);
kafka.javaapi.TopicMetadataResponse resp = consumer.send(req); List<TopicMetadata> metaData = resp.topicsMetadata();
for (TopicMetadata item : metaData) {
for (PartitionMetadata part : item.partitionsMetadata()) {
if (part.partitionId() == a_partition) {
returnMetaData = part;
break loop;
}
}
}
} catch (Exception e) {
System.out.println("Error communicating with Broker [" + seed + "] to find Leader for [" + a_topic
+ ", " + a_partition + "] Reason: " + e);
} finally {
if (consumer != null) consumer.close();
}
}
if (returnMetaData != null) {
m_replicaBrokers.clear();
m_replicaPorts.clear();
for (BrokerEndPoint replica : returnMetaData.replicas()) {
m_replicaBrokers.add(replica.host());
m_replicaPorts.add(replica.port());
}
}
return returnMetaData;
}
}
kafka的Java客户端示例代码(kafka_2.11-0.8.2.2)的更多相关文章
- kafka的Java客户端示例代码(kafka_2.12-0.10.2.1)
使用0.9开始增加的KafkaProducer和KafkaConsumer. Pom.xml <project xmlns="http://maven.apache.org/POM/4 ...
- 4 kafka集群部署及kafka生产者java客户端编程 + kafka消费者java客户端编程
本博文的主要内容有 kafka的单机模式部署 kafka的分布式模式部署 生产者java客户端编程 消费者java客户端编程 运行kafka ,需要依赖 zookeeper,你可以使用已有的 zo ...
- 正则表达式学习笔记(附:Java版示例代码)
具体学习推荐:正则表达式30分钟入门教程 . 除换行符以外的任意字符\w word,正常字符,可以当做变量名的,字母.数字.下划线.汉字\s space,空白符 ...
- C# WebSocket 服务端示例代码 + HTML5客户端示例代码
WebSocket服务端 C#示例代码 using System; using System.Collections.Generic; using System.Linq; using System. ...
- HDFS的Java客户端操作代码(HDFS的查看、创建)
1.HDFS的put上传文件操作的java代码: package Hdfs; import java.io.FileInputStream; import java.io.FileNotFoundEx ...
- JAVA SSM 示例代码
SSM 即spring+spring mvc+mybatis,开发工具IDEA 1.先看下项目结构如图: 2.主要配置文件 spring-mvc.xml <?xml version=" ...
- kafka生产者java客户端
producer 包含一个用于保存待发送消息的缓冲池,缓冲池中消息是还没来得及传输到kafka集群的消息. 位于底层的kafka I/O线程负责将缓冲池中的消息转换成请求发送到集群.如果在结束prod ...
- java 综合示例代码
package javaenhance.src.cn.itcast.day3; import java.lang.reflect.Constructor; import java.lang.refle ...
- HDFS的java客户端操作代码(Windows上面打jar包,提交至linux运行)
1.通过java.net.URL实现屏幕显示demo1文件的内容 package Hdfs; import java.io.InputStream; import java.net.URL; impo ...
随机推荐
- Spring Cloud简介
一.本文介绍 Web应用由最早的单体应用发展成为集群式的部署,再到现在的分布式系统.尤其是这两年分布式相关的技术发展的很快,一方面是以Dubbo为代表的,另一方面则是以Spring Cloud系列为代 ...
- mysql中的data下的数据文件(.FRM、.MYD、.MYI)恢复为数据
记一次mysql中的data文件操作经历 想拿到一个项目的最新的数据,做功能升级使用,备份一份数据同时也作为本地测试数据,文件有些大,我直接通过远程的phpmyadmin程序导出,不能愉快的玩耍,直接 ...
- 将应用代码由eclipse导入Android studio的方法NDK-Build和Cmake两种方法(以android_serialport_api为例)
网上翻了几百篇博客,看了半天,要不就是写的乱七八糟看不懂,要不就是隐藏了一些细节,要不就是实现不了,最后还是在Android官网上看明白了,而且说得有条有理,以后遇到不懂的一定要先翻官网. 参考资料: ...
- SpringBoot入门之基于Druid配置Mybatis多数据源
上一篇了解了Druid进行配置连接池的监控和慢sql处理,这篇了解下使用基于基于Druid配置Mybatis多数据源.SpringBoot默认配置数据库连接信息时只需设置url等属性信息就可以了,Sp ...
- SpringMVC4+MyBatis+SQL Server2014实现读写分离
前言 基于mybatis的AbstractRoutingDataSource和Interceptor用拦截器的方式实现读写分离,根据MappedStatement的boundsql,查询sql的sel ...
- ASP.NET Identity 二 (转载)
来源:http://www.cnblogs.com/r01cn/p/5180892.html#undefined 推荐看原文,这里转载是怕好文章消失了. 注:本文是[ASP.NET Identity系 ...
- Receiver 和 Direct方式的区别
Kafka direct 跟receiver 方式接收数据的区别? Receiver是使用Kafka的高层次Consumer API来实现的.Receiver从Kafka中获取的数据都是存储在Spar ...
- Spring中四种实例化bean的方式
本文主要介绍四种实例化bean的方式(注入方式) 或者叫依赖对象实例化的四种方式.上面的程序,创建bean 对象,用的是什么方法 ,用的是构造函数的方式 (Spring 可以在构造函数私有化的情况下把 ...
- Ajax提交用FormData()上传文件
1.form声明如下 2.ajax设置如下 var formData = new FormData(document.getElementById("form")); $.ajax ...
- blfs(systemd版本)学习笔记-前几章节的脚本配置
我的邮箱地址:zytrenren@163.com欢迎大家交流学习纠错! 记录blfs书籍前几个章节的配置内容. bash shell启动文件章节 1.切换root用户 su 2.创建/etc/prof ...