1.使用Producer API发送消息到Kafka

从版本0.9开始被KafkaProducer替代。

HelloWorldProducer.java

package cn.ljh.kafka.kafka_helloworld;

import java.util.Date;
import java.util.Properties;
import java.util.Random; import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig; public class HelloWorldProducer {
public static void main(String[] args) {
long events = Long.parseLong(args[0]);
Random rnd = new Random(); Properties props = new Properties();
//配置kafka集群的broker地址,建议配置两个以上,以免其中一个失效,但不需要配全,集群会自动查找leader节点。
props.put("metadata.broker.list", "192.168.137.176:9092,192.168.137.176:9093");
//配置value的序列化类
//key的序列化类key.serializer.class可以单独配置,默认使用value的序列化类
props.put("serializer.class", "kafka.serializer.StringEncoder");
//配置partitionner选择策略,可选配置
props.put("partitioner.class", "cn.ljh.kafka.kafka_helloworld.SimplePartitioner");
props.put("request.required.acks", "1"); ProducerConfig config = new ProducerConfig(props); Producer<String, String> producer = new Producer<String, String>(config); for (long nEvents = 0; nEvents < events; nEvents++) {
long runtime = new Date().getTime();
String ip = "192.168.2." + rnd.nextInt(255);
String msg = runtime + ",www.example.com," + ip;
KeyedMessage<String, String> data = new KeyedMessage<String, String>("page_visits", ip, msg);
producer.send(data);
}
producer.close();
}
}

SimplePartitioner.java

package cn.ljh.kafka.kafka_helloworld;

import kafka.producer.Partitioner;
import kafka.utils.VerifiableProperties; public class SimplePartitioner implements Partitioner {
public SimplePartitioner (VerifiableProperties props) { } public int partition(Object key, int a_numPartitions) {
int partition = 0;
String stringKey = (String) key;
int offset = stringKey.lastIndexOf('.');
if (offset > 0) {
partition = Integer.parseInt( stringKey.substring(offset+1)) % a_numPartitions;
}
return partition;
} }

2.使用Kafka High Level Consumer API接收消息

ConsumerGroupExample.java

package cn.ljh.kafka.kafka_helloworld;

import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector; import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit; public class ConsumerGroupExample {
private final ConsumerConnector consumer;
private final String topic;
private ExecutorService executor; public ConsumerGroupExample(String a_zookeeper, String a_groupId, String a_topic) {
consumer = kafka.consumer.Consumer.createJavaConsumerConnector(
createConsumerConfig(a_zookeeper, a_groupId));
this.topic = a_topic;
} public void shutdown() {
if (consumer != null) consumer.shutdown();
if (executor != null) executor.shutdown();
try {
if (!executor.awaitTermination(5000, TimeUnit.MILLISECONDS)) {
System.out.println("Timed out waiting for consumer threads to shut down, exiting uncleanly");
}
} catch (InterruptedException e) {
System.out.println("Interrupted during shutdown, exiting uncleanly");
}
} public void run(int a_numThreads) {
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, new Integer(a_numThreads));
Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic); // now launch all the threads
//
executor = Executors.newFixedThreadPool(a_numThreads); // now create an object to consume the messages
//
int threadNumber = 0;
for (final KafkaStream stream : streams) {
executor.submit(new ConsumerTest(stream, threadNumber));
threadNumber++;
}
} private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) {
Properties props = new Properties();
props.put("zookeeper.connect", a_zookeeper);
props.put("group.id", a_groupId);
props.put("zookeeper.session.timeout.ms", "400");
props.put("zookeeper.sync.time.ms", "200");
props.put("auto.commit.interval.ms", "1000"); return new ConsumerConfig(props);
} public static void main(String[] args) {
// String zooKeeper = args[0];
// String groupId = args[1];
// String topic = args[2];
// int threads = Integer.parseInt(args[3]); String zooKeeper = "192.168.137.176:2181,192.168.137.176:2182,192.168.137.176:2183";
String groupId = "group1";
String topic = "page_visits";
int threads = 5; ConsumerGroupExample example = new ConsumerGroupExample(zooKeeper, groupId, topic);
example.run(threads); try {
Thread.sleep(10000);
} catch (InterruptedException ie) { }
example.shutdown();
}
}

ConsumerTest.java

package cn.ljh.kafka.kafka_helloworld;

import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream; public class ConsumerTest implements Runnable {
private KafkaStream m_stream;
private int m_threadNumber; public ConsumerTest(KafkaStream a_stream, int a_threadNumber) {
m_threadNumber = a_threadNumber;
m_stream = a_stream;
} public void run() {
ConsumerIterator<byte[], byte[]> it = m_stream.iterator();
//线程会一直等待有消息进入
while (it.hasNext())
System.out.println("Thread " + m_threadNumber + ": " + new String(it.next().message()));
System.out.println("Shutting down Thread: " + m_threadNumber);
}
}

3.使用kafka Simple Consumer API接收消息

SimpleConsumerExample.java

package cn.ljh.kafka.kafka_helloworld;

import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.cluster.BrokerEndPoint;
import kafka.common.ErrorMapping;
import kafka.common.TopicAndPartition;
import kafka.javaapi.*;
import kafka.javaapi.consumer.SimpleConsumer;
import kafka.message.MessageAndOffset; import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/*
Why use SimpleConsumer?
The main reason to use a SimpleConsumer implementation is
you want greater control over partition consumption than Consumer Groups give you.
For example you want to:
1.Read a message multiple times
2.Consume only a subset of the partitions in a topic in a process
3.Manage transactions to make sure a message is processed once and only once
Downsides of using SimpleConsumer
The SimpleConsumer does require a significant amount of work not needed in the Consumer Groups:
1.You must keep track of the offsets in your application to know where you left off consuming.
2.You must figure out which Broker is the lead Broker for a topic and partition
3.You must handle Broker leader changes
Steps for using a SimpleConsumer
1.Find an active Broker and find out which Broker is the leader for your topic and partition
2.Determine who the replica Brokers are for your topic and partition
3.Build the request defining what data you are interested in
4.Fetch the data
5.Identify and recover from leader changes
You can change the following items if necessary.
1.Maximum number of messages to read (so we don’t loop forever)
2.Topic to read from
3.Partition to read from
4.One broker to use for Metadata lookup
5.Port the brokers listen on
*/
public class SimpleConsumerExample {
public static void main(String args[]) {
SimpleConsumerExample example = new SimpleConsumerExample(); //Maximum number of messages to read (so we don’t loop forever)
long maxReads = 500;
//Topic to read from
String topic = "page_visits";
//Partition to read from
int partition = 2;
//One broker to use for Metadata lookup
List<String> seeds = new ArrayList<String>();
seeds.add("192.168.137.176");
//Port the brokers listen on
List<Integer> ports = new ArrayList<Integer>();
ports.add(9092);
try {
example.run(maxReads, topic, partition, seeds, ports);
} catch (Exception e) {
System.out.println("Oops:" + e);
e.printStackTrace();
}
} private List<String> m_replicaBrokers = new ArrayList<String>();
private List<Integer> m_replicaPorts = new ArrayList<Integer>(); public SimpleConsumerExample() {
m_replicaBrokers = new ArrayList<String>();
m_replicaPorts = new ArrayList<Integer>();
} public void run(long a_maxReads, String a_topic, int a_partition, List<String> a_seedBrokers, List<Integer> a_ports) throws Exception {
// find the meta data about the topic and partition we are interested in
//
PartitionMetadata metadata = findLeader(a_seedBrokers, a_ports, a_topic, a_partition);
if (metadata == null) {
System.out.println("Can't find metadata for Topic and Partition. Exiting");
return;
}
if (metadata.leader() == null) {
System.out.println("Can't find Leader for Topic and Partition. Exiting");
return;
}
String leadBroker = metadata.leader().host();
int a_port = metadata.leader().port();
String clientName = "Client_" + a_topic + "_" + a_partition; SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
// kafka.api.OffsetRequest.EarliestTime() finds the beginning of the data in the logs and starts streaming from there
long readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.EarliestTime(), clientName); int numErrors = 0;
while (a_maxReads > 0) {
if (consumer == null) {
consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
}
// Note: this fetchSize of 100000 might need to be increased if large batches are written to Kafka
FetchRequest req = new FetchRequestBuilder()
.clientId(clientName)
.addFetch(a_topic, a_partition, readOffset, 100000)
.build(); FetchResponse fetchResponse = consumer.fetch(req); //Identify and recover from leader changes
if (fetchResponse.hasError()) {
numErrors++;
// Something went wrong!
short code = fetchResponse.errorCode(a_topic, a_partition);
System.out.println("Error fetching data from the Broker:" + leadBroker + " Reason: " + code);
if (numErrors > 5) break;
if (code == ErrorMapping.OffsetOutOfRangeCode()) {
// We asked for an invalid offset. For simple case ask for the last element to reset
readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.LatestTime(), clientName);
continue;
}
consumer.close();
consumer = null;
//查找新的leader
metadata = findNewLeader(leadBroker, a_topic, a_partition, a_port);
leadBroker = metadata.leader().host();
a_port = metadata.leader().port();
continue;
}
numErrors = 0; //Fetch the data
long numRead = 0;
for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) {
if(a_maxReads > 0){
long currentOffset = messageAndOffset.offset();
//This is needed since if Kafka is compressing the messages,
//the fetch request will return an entire compressed block even if the requested offset isn't the beginning of the compressed block.
if (currentOffset < readOffset) {
System.out.println("Found an old offset: " + currentOffset + " Expecting: " + readOffset);
continue;
}
readOffset = messageAndOffset.nextOffset();
ByteBuffer payload = messageAndOffset.message().payload(); byte[] bytes = new byte[payload.limit()];
payload.get(bytes);
System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8"));
numRead++;
a_maxReads--;
}
} //If we didn't read anything on the last request we go to sleep for a second so we aren't hammering Kafka when there is no data.
if (numRead == 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}
if (consumer != null) consumer.close();
} public static long getLastOffset(SimpleConsumer consumer, String topic, int partition,
long whichTime, String clientName) {
TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(
requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
OffsetResponse response = consumer.getOffsetsBefore(request); if (response.hasError()) {
System.out.println("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition) );
return 0;
}
long[] offsets = response.offsets(topic, partition);
return offsets[0];
} private PartitionMetadata findNewLeader(String a_oldLeader, String a_topic, int a_partition, int a_oldLeader_port) throws Exception {
for (int i = 0; i < 3; i++) {
boolean goToSleep = false;
PartitionMetadata metadata = findLeader(m_replicaBrokers, m_replicaPorts, a_topic, a_partition);
if (metadata == null) {
goToSleep = true;
} else if (metadata.leader() == null) {
goToSleep = true;
} else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) &&
a_oldLeader_port == metadata.leader().port() && i == 0) {
// first time through if the leader hasn't changed, give ZooKeeper a second to recover
// second time, assume the broker did recover before failover, or it was a non-Broker issue
//
goToSleep = true;
} else {
return metadata;
}
if (goToSleep) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}
System.out.println("Unable to find new leader after Broker failure. Exiting");
throw new Exception("Unable to find new leader after Broker failure. Exiting");
} private PartitionMetadata findLeader(List<String> a_seedBrokers, List<Integer> a_port, String a_topic, int a_partition) {
PartitionMetadata returnMetaData = null;
loop:
for (int i = 0; i < a_seedBrokers.size(); i++) {
String seed = a_seedBrokers.get(i);
SimpleConsumer consumer = null;
try {
consumer = new SimpleConsumer(seed, a_port.get(i), 100000, 64 * 1024, "leaderLookup");
List<String> topics = Collections.singletonList(a_topic);
TopicMetadataRequest req = new TopicMetadataRequest(topics);
kafka.javaapi.TopicMetadataResponse resp = consumer.send(req); List<TopicMetadata> metaData = resp.topicsMetadata();
for (TopicMetadata item : metaData) {
for (PartitionMetadata part : item.partitionsMetadata()) {
if (part.partitionId() == a_partition) {
returnMetaData = part;
break loop;
}
}
}
} catch (Exception e) {
System.out.println("Error communicating with Broker [" + seed + "] to find Leader for [" + a_topic
+ ", " + a_partition + "] Reason: " + e);
} finally {
if (consumer != null) consumer.close();
}
}
if (returnMetaData != null) {
m_replicaBrokers.clear();
m_replicaPorts.clear();
for (BrokerEndPoint replica : returnMetaData.replicas()) {
m_replicaBrokers.add(replica.host());
m_replicaPorts.add(replica.port());
}
}
return returnMetaData;
}
}

kafka的Java客户端示例代码(kafka_2.11-0.8.2.2)的更多相关文章

  1. kafka的Java客户端示例代码(kafka_2.12-0.10.2.1)

    使用0.9开始增加的KafkaProducer和KafkaConsumer. Pom.xml <project xmlns="http://maven.apache.org/POM/4 ...

  2. 4 kafka集群部署及kafka生产者java客户端编程 + kafka消费者java客户端编程

    本博文的主要内容有   kafka的单机模式部署 kafka的分布式模式部署 生产者java客户端编程 消费者java客户端编程 运行kafka ,需要依赖 zookeeper,你可以使用已有的 zo ...

  3. 正则表达式学习笔记(附:Java版示例代码)

    具体学习推荐:正则表达式30分钟入门教程 .         除换行符以外的任意字符\w      word,正常字符,可以当做变量名的,字母.数字.下划线.汉字\s        space,空白符 ...

  4. C# WebSocket 服务端示例代码 + HTML5客户端示例代码

    WebSocket服务端 C#示例代码 using System; using System.Collections.Generic; using System.Linq; using System. ...

  5. HDFS的Java客户端操作代码(HDFS的查看、创建)

    1.HDFS的put上传文件操作的java代码: package Hdfs; import java.io.FileInputStream; import java.io.FileNotFoundEx ...

  6. JAVA SSM 示例代码

    SSM 即spring+spring mvc+mybatis,开发工具IDEA 1.先看下项目结构如图: 2.主要配置文件 spring-mvc.xml <?xml version=" ...

  7. kafka生产者java客户端

    producer 包含一个用于保存待发送消息的缓冲池,缓冲池中消息是还没来得及传输到kafka集群的消息. 位于底层的kafka I/O线程负责将缓冲池中的消息转换成请求发送到集群.如果在结束prod ...

  8. java 综合示例代码

    package javaenhance.src.cn.itcast.day3; import java.lang.reflect.Constructor; import java.lang.refle ...

  9. HDFS的java客户端操作代码(Windows上面打jar包,提交至linux运行)

    1.通过java.net.URL实现屏幕显示demo1文件的内容 package Hdfs; import java.io.InputStream; import java.net.URL; impo ...

随机推荐

  1. jenkins+Android+gradle持续集成

    本文Android自动化打包采用jenkins+gradle+upload to pyger的方式来实现,job执行完后只需要打开链接扫描二维码即可下载apk. 一.环境准备 1.下载Android ...

  2. 深度学习论文翻译解析(二):An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

    论文标题:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application ...

  3. SpringBoot入门之基于XML的Mybatis

    上一博客介绍了下SpringBoot基于注解引入Mybatis,今天介绍基于XML引入Mybatis.还是在上一篇demo的基础上进行修改. 一.Maven引入 这个与上一篇的一样,需要引入mybat ...

  4. angular 禁止缓存

    angular 单页面开发,会存在和管理很多HTML和JS文件,缓存有时是个麻烦. 在开发和测试阶段,F12调出调试工具,禁止缓存F5刷新下就好了. 但是在客户那里缓存就体验效果不好,甚至认为有问题, ...

  5. [转]完整记录在 windows7 下使用 docker 的过程

    本文转自:https://www.jianshu.com/p/d809971b1fc1 借助 docker 可以不在开发电脑中安装环境,比如 nodejs,记录下如何实现. 下载安装 根据自己的电脑系 ...

  6. Mybatis 3 配置 Log4j

    Mybatis与Log4j 最常用的日志输出是Log4j,将相应的jar包和配置文件放到相应的位置,Mybatis就可以通过Log4j将SQL语句打印出来. 配置Log4j.properties 将l ...

  7. www.jqhtml.com 前端框架特效

    www.jqhtml.com * 请选择课程 初级班 (PS.HTML.CSS.静态网站项目实战) 中级班 JavaScript基础.JavaScript DOM.jQuery.JS进阶.HTML5和 ...

  8. c# 封装Dapper操作类

    using Dapper; using DapperExtensions; using System.Collections.Generic; using System.Configuration; ...

  9. 【Dubbo&&Zookeeper】6、 给dubbo接口添加白名单——dubbo Filter的使用

    在开发中,有时候需要限制访问的权限,白名单就是一种方法.对于Java Web应用,Spring的拦截器可以拦截Web接口的调用:而对于dubbo接口,Spring的拦截器就不管用了. dubbo提供了 ...

  10. github-SSH模式如何配置秘钥clone远程仓库以及分支切换

    一.ssh模式clone 恕我无知,之前使用git命令都是https模式,该模式每次push都需要输入账号和密码,而且速度会根据的网速的快慢而定. 近日电脑重装了系统,在用SSH模式clone远程仓库 ...