假设已经求出了在每个点的最优期望收益,显然最优策略是仅当移动一次后的期望收益>当前点收益时移动。对于初始点,其两边各存在一个最近的不满足上述条件的位置,因此从初始点开始随机游走,直到移动到这两个点之一时停止即为最优方案。

  设当前点为i,左边的停止点为x,右边的停止点为y,考虑在x停止和在y停止的概率各是多少。设从i点出发在x停止的概率为f(i),显然有f(x)=1,f(y)=0,f(i)=[f(i-1)+f(i+1)]/2。解方程得f(i)=(y-i)/(y-x)。在y停止的概率同理。

  再设f[i]为从i点出发的最优期望收益,则f[i]=(y-i)/(y-x)*a[x]+(i-x)/(y-x)*a[y]。注意到这个式子实际上是(x,a[x])和(y,a[y])的连线在i点的值。所以如果任意两点间的连线都不高于在该点停止的收益,该点即为停止点。求出凸包即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],q[N],m;
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
q[++m]=;
for (int i=;i<=n+;i++)
{
while (m>&&1ll*(a[i]-a[q[m]])*(q[m]-q[m-])>1ll*(a[q[m]]-a[q[m-]])*(i-q[m])) m--;
q[++m]=i;
}
for (int i=;i<m;i++)
for (int j=q[i]+;j<=q[i+];j++)
if (j<=n) printf(LL,(1ll*a[q[i]]*(q[i+]-j)+1ll*a[q[i+]]*(j-q[i]))*/(q[i+]-q[i]));
return ;
}

Luogu5155 USACO18DEC Balance Beam(概率期望+凸包)的更多相关文章

  1. 洛谷P5155 [USACO18DEC]Balance Beam(期望,凸包)

    你以为它是一个期望dp,其实它是一个凸包哒! 设平衡木长度为\(L\),把向右走平衡木那个式子写一下: \[dp[i]=\frac{dp[i+1]+dp[i-1]}{2}\] 然后会发现这是一个等差数 ...

  2. Luogu5155 [USACO18DEC]Balance Beam

    题目链接:洛谷 这道题看起来是个期望题,但是其实是一道计算几何(这种题太妙了) 首先有一个很好的结论,在一个长度为$L$的数轴上,每次从$x$处出发,不停地走,有$\frac{x}{L}$的概率从右端 ...

  3. 题解-USACO18DEC Balance Beam详细证明

    (翻了翻其他的题解,觉得它们没讲清楚这个策略的正确性) Problem 洛谷5155 题意概要:给定一个长为\(n\)的序列,可以选择以\(\frac 12\)的概率进行左右移动,也可以结束并得到当前 ...

  4. 题解 [USACO18DEC]Balance Beam

    被概率冲昏的头脑~~~ 我们先将样例在图上画下来: 会发现,最大收益是: 看出什么了吗? 这不就是凸包吗? 跑一遍凸包就好了呀,这些点中,如果i号点是凸包上的点,那么它的ans就是自己(第二个点),不 ...

  5. [USACO18DEC]Balance Beam

    题目链接:这里 或者这里 答案是很显然的,记\(g(i)\)为在\(i\)下平衡木时的期望收益 那么\(g(i)=max(f(i),\frac{g(i-1)+g(i+1)}{2})\) 好了做完了 T ...

  6. [USACO18DEC]Balance Beam P

    根据题意不难发现这个模型是不好进行贪心的,于是可以考虑使用 \(dp\).可以令 \(dp_i\) 表示在 \(i\) 位置以最优策略能获得的报酬期望值,那么会有转移: \[dp_i = \max(f ...

  7. p5155 [USACO18DEC]Balance Beam

    传送门 分析 https://www.luogu.org/blog/22112/solution-p5155 代码 #include<bits/stdc++.h> using namesp ...

  8. [bzoj5483][Usaco2018 Dec]Balance Beam_凸包_概率期望

    bzoj5483 Usaco2018Dec Balance Beam 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=5483 数据范围:略. 题解 ...

  9. 概率与期望详解!一次精通oi中的概率期望

    目录 基础概念 最大值不超过Y的期望 概率为P时期望成功次数 基础问题 拿球 随机游走 经典问题 期望线性性练习题 例题选讲 noip2016换教室 区间交 0-1边树求直径期望 球染色 区间翻转 二 ...

随机推荐

  1. Quartz的JobDetail没有触发器指向时会被删除的问题

    之前项目里使用的是老版本的Quartz,才1.6.5.发现一个问题,如果我触发器配置的时间已经过了,想去手动触发一个任务,就会报找不到这个任务的异常,通过debug可以发现,Scheduler里添加j ...

  2. kubernetes session回话保持

    1.Nginx 版本 root@ingress-nginx-controller-4b75b:/# /usr/sbin/nginx -vnginx version: nginx/1.13.9 2.in ...

  3. OK6410移植linux3.3.1

    本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 首先修改资源代码,进入arch/arm/mach-s3c64xx/目录,在这里我们使用mini6410的资源配置 ...

  4. Kubernetes-v1.12.0基于kubeadm部署

    1.主机规划 #master节点(etcd/apiserver/scheduler/controller manager)master.example.cometh0: 192.168.0.135et ...

  5. CF1097F Alex and a TV Show 莫比乌斯反演、bitset

    传送门 发现自己对mobius反演的理解比较浅显-- 首先我们只需要维护每一个数的出现次数\(\mod 2\)的值,那么实际上我们只需要使用\(bitset\)进行维护,每一次加入一个数将其对应次数异 ...

  6. [JSOI2016]无界单词[动态规划、kmp]

    题意 题目链接 分析 对于第一问,枚举最终串最小的相同前后缀来统计答案. 由于最小的相同前后缀也是无界单词,所以可以考虑先求解子问题. 定义状态 \(f(i)\) 表示长度为 \(i\) 的串中有多少 ...

  7. C#编程:从控制台读取数字的两种方式

    有时需要从控制台输入数字,就用到前面介绍的内容,数据转换,如:int num=int.Pares(Console.ReadLine()); int num=Convert.ToInt32(Consol ...

  8. Asp.Net Core基于Cookie实现同域单点登录(SSO)

    在同一个域名下有很多子系统 如:a.giant.com  b.giant.com   c.giant.com等 但是这些系统都是giant.com这个子域. 这样的情况就可以在不引用其它框架的情况下, ...

  9. 一个高性能的对象属性复制类,支持不同类型对象间复制,支持Nullable<T>类型属性

    由于在实际应用中,需要对大量的对象属性进行复制,原来的方法是通过反射实现,在量大了以后,反射的性能问题就凸显出来了,必须用Emit来实现. 搜了一圈代码,没发现适合的,要么只能在相同类型对象间复制,要 ...

  10. WIFI探针技术

    1.WIFI 探针定义 WIFI 探针是一种能够主动识别 Android 和 IOS 设备,感知用户行为轨迹的精准数据收集前端,基于 WIFI探测技术.移动互联网和云计算等先进技术自动识别探针附近的智 ...