一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了……看来“学”完新东西不经常做题不写博客,就白学了 = =
我没啥智商 ,网上的FWT博客我大多看不懂,下面这篇博客是留给我我再次忘记FWT时看的,所以像我一样的没智商选手应该也能看懂!有智商选手更能看懂咯!
(写得非常匆忙,如有任何错误请在评论区指正!TAT)
什么是FWT
FWT是用来快速做位运算卷积的。位运算卷积是什么?给出两个数组\(A\)和\(B\)(长度相等且是2的整数次幂),求一个数组\(C\),满足\(A * B = C\),这个“\(*\)”的定义如下:$$A * B = C \Leftrightarrow C_k = \sum_{i\oplus j = k}A_i \cdot B_j$$ 其中“\(\oplus\)”是一种位运算,可以是与(&)、或(|)、异或(^)。
为什么要有一个变换呢?回想一下FFT,FFT求\(A*B\)时(这个“\(*\)”是多项式乘法那个卷积),是把\(A\)和\(B\)各自“变换”了一下,然后把变换后的数组按位相乘,得到“变换后的\(C\)”——\(tf(C)\),然后把\(tf(C)\)逆变换回去,得到\(C\)数组。
FWT做位运算卷积的原理也类似,想要实现快速位运算卷积,就要找到一种变换\(tf\)满足\(tf(A*B) = tf(A)\times tf(B)\),这里的“\(\times\)”表示两个数组按位相乘(和那个表示卷积的“\(*\)”不是一个符号)。
再强调一下本文中符号的定义,在下文中:
\]
\]
用FWT解决或卷积
或卷积,就是把\(A * B = C \Leftrightarrow C_k = \sum_{i\oplus j = k}A_i \cdot B_j\)中的“\(\oplus\)”定义为按位或运算(|)。我们的目标是找到一种变换\(tf\)满足\(tf(A*B) = tf(A)\times tf(B)\),还要找到一种逆变换\(utf\),能把\(tf(C)\)变回\(C\)。
目标
- 找到\(tf\)
- 找到\(utf\)
找到\(tf\)
这是位运算,所以应该按位分治。
根据下标在最高位是0还是1,把\(A\)数组拆成两个数组\(A_0\)和\(A_1\),\(A_0\)是\(A\)中下标最高位是0的元素组成的数组,\(A_1\)是\(A\)中下标最高位是1的元素组成的数组——实际上,\(A_0\)就是\(A\)的前一半,\(A_1\)是\(A\)的后一半。用\(A = (A_0, A_1)\)表示这种“等式右边两个数组首尾相接就能得到等式左边的数组”的关系。
定义$$tf(A) = (tf(A_0), tf(A_1) + tf(A_0))$$
当\(A\)长度为1,无法再划分时,\(tf(A) = A\)。
对了,显然\(tf(X + Y) = tf(X) + tf(Y)\),这里“\(+\)”就是按位相加。
(这个\(tf\)是怎么找到的?这篇博客讲了讲……但是即使我知道了如何找到或卷积的\(tf\),异或卷积的我还是找不出来……还是甩出这个式子然后证明它吧。)
来证明一下\(tf(C = A * B) = tf(A) \times tf(B)\)。
当\(A, B\)长度均为1时显然。
当\(A, B\)长度大于1时 ,我们使用归纳法——可以假定“长度除以2后\(tf(C = A * B) = tf(A) \times tf(B)\)是成立的”,即$$tf(A_0*B_0) = tf(A_0) \times tf(B_0)\tf(A_1 * B_1) = tf(A_1) \times tf(B_1)\tf(A_0 * B_1) = tf(A_0) \times tf(B_1)\tf(A_1 * B_0) = tf(A_1) \times tf(B_0)$$如果我们在这四个条件的基础上能证明\(tf(C = A * B) = tf(A) \times tf(B)\),则这四个条件递归证明即可,递归到长度为1时,就直接证毕了。
那么如何证明当前这一层\(tf(C = A * B) = tf(A) \times tf(B)\)呢?
首先,$$C=(A_0 * B_0, A_1 * B_0 + A_0 * B_1 + A_1 * B_1)$$。这是可以理解的:在\(A\)中最高位是0的一个下标,和在\(B\)中最高位是0的一个下标,或起来还是0,所以他俩卷积的结果应该放在\(C_0\)中,其余三项同理。
然后从等式左边推一下,$$\begin{align}tf(C) &= (tf(A_0 * B_0), tf(A_1 * B_0 + A_0 * B_1 + A_1 * B_1) + tf(A_0 * B_0))\&=(tf(A_0B_0), tf(A_1B_0) + tf(A_0B_1) + tf(A_1 * B_1) + tf(A_0 * B_0)) \ &= (tf(A_0) \times tf(B_0), tf(A_1) \times tf(B_0) + tf(A_0) \times tf(B_1) + tf(A_1) \times tf(B_1) + tf(A_0)\times tf(B_0))\end{align*}$$
这一步是基于\(tf\)的定义以及上面的那四个条件的。
然后从等式右边推一下,$$\begin{align}tf(A) \times tf(B) &= (tf(A_0), tf(A_1) + tf(A_0)) \times (tf(B_0), tf(B_1) + tf(B_0)))\&=(tf(A_0) \times tf(B_0), tf(A_0)\times tf(B_0) + tf(A_1) \times tf(B_0) + tf(A_0) \times tf(B_1) + tf(A_1) \times tf(B_1))\end{align}$$
这一步是基于“\(\times\)”符号的意义——按位相乘得出来的。
这样一来,等式两边恰好相等诶!
所以我们已经找到了或卷积的\(tf\):$$tf(A) = (tf(A_0), tf(A_1) + tf(A_0))$$
找到\(utf\)
目标:找到一个\(utf\)使得\(utf(tf(A)) = A\)。
这相当于把上面那个式子倒着推,怎么个倒推法呢?
正着推是已知\(A = (A_0, A_1)\),求\(tf(A) = (tf(A)_0, tf(A)_1)\)。
倒着推就是已知\(tf(A) = (tf(A)_0, tf(A)_1)\),求\(utf(tf(A)) = A = (A_0, A_1) = (utf(tf(A_0)), utf(tf(A_1)))\)。
那么根据上面的\(tf(A) = (tf(A_0), tf(A_1) + tf(A_0))\),有\(tf(A)_0 = tf(A_0), tf(A)_1 = tf(A_0) + tf(A_1)\)。
所以直接得到\(tf(A_0) = tf(A)_0\), 两式相减又得到\(tf(A_1) = tf(A)_1 - tf(A)_0\)。
所以\(utf(tf(A)) = A = (A_0, A_1) = (utf(tf(A_0)), utf(tf(A_1)) = (utf(tf(A)_0), utf(tf(A)_1 - tf(A)_0))\)
将\(tf(A)\)替换成\(A\),得到\(utf(A) = (utf(A), utf(A_1) - utf(A_0))\)
这就是逆变换\(utf\)了。
总结
或卷积的FWT:
\]
\]
用FWT解决与卷积
与卷积和或卷积非常类似。
有\(C = (A_0*B_0 + A_0*B_1 + A_1 *B_0, A_1*B_1)\)
定义$$tf(A) = (tf(A_0) + tf(A_1), tf(A_1))$$
类似上面或卷积的证明过程可以证明它。
类似地,$$utf(A) = (utf(A_0) - utf(A_1), utf(A_1))$$
用FWT解决异或卷积
和上面的也很类似,但是异或卷积的式子更复杂一丁点。它是:
\]
\]
证明嘛……和上面的或卷积证明也差不多!
板子
我的异或卷积板子:
ll inc(ll x, ll y){return (x += y) >= P ? x - P : x;}
ll dec(ll x, ll y){return (x -= y) < 0 ? x + P : x;}
void transform(ll *a, int n, bool inv){
for(int l = 2; l <= n; l <<= 1){
int m = l >> 1;
for(ll *p = a; p != a + n; p += l)
for(int i = 0; i < m; i++){
ll t = p[i + m];
p[i + m] = dec(p[i], t);
p[i] = inc(p[i], t);
}
if(inv)
for(int i = 0; i < n; i++)
a[i] = a[i] * inv2 % P;
}
}
异或已经是写起来最长的啦,其他两个都特别短~
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记的更多相关文章
- 快速沃尔什变换 FWT 学习笔记【多项式】
〇.前言 之前看到异或就担心是 FWT,然后才开始想别的. 这次学了 FWT 以后,以后判断应该就很快了吧? 参考资料 FWT 详解 知识点 by neither_nor 集训队论文 2015 集合幂 ...
- 快速沃尔什变换 (FWT)学习笔记
证明均来自xht37 的洛谷博客 作用 在 \(OI\) 中,\(FWT\) 是用于解决对下标进行位运算卷积问题的方法. \(c_{i}=\sum_{i=j \oplus k} a_{j} b_{k} ...
- 快速沃尔什变换(FWT)学习笔记 + 洛谷P4717 [模板]
FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor ...
- 【学习笔鸡】快速沃尔什变换FWT
[学习笔鸡]快速沃尔什变换FWT OR的FWT 快速解决: \[ C[i]=\sum_{j|k=i} A[j]B[k] \] FWT使得我们 \[ FWT(C)=FWT(A)*FWT(B) \] 其中 ...
- 快速傅里叶变换(FFT)学习笔记(其一)
再探快速傅里叶变换(FFT)学习笔记(其一) 目录 再探快速傅里叶变换(FFT)学习笔记(其一) 写在前面 为什么写这篇博客 一些约定 前置知识 多项式卷积 多项式的系数表达式和点值表达式 单位根及其 ...
- 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))
也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...
- 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...
- 快速傅里叶变换(FFT)学习笔记(其二)(NTT)
再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 写在前面 一些约定 前置知识 同余类和剩余系 欧拉定理 阶 原根 求原根 NTT ...
- 快速沃尔什变换FWT
快速沃尔什变换\(FWT\) 是一种可以快速完成集合卷积的算法. 什么是集合卷积啊? 集合卷积就是在集合运算下的卷积.比如一般而言我们算的卷积都是\(C_i=\sum_{j+k=i}A_j*B_k\) ...
随机推荐
- Ubuntu16.04程序自启动
试过修改/etc/rc.local文件,但是启动无效. 目前试过行之有效的方式如下: 参考:https://www.aliyun.com/jiaocheng/186625.html 在终端执行 gno ...
- 如何看待P2P领域的羊毛党?
本文来自网易云社区 不利:不利的影响应该是显而易见的,前面的题主也有解释过.总结来说,不利的影响主要是两点: a. 对平台毛利和资金的损害.一般来说,优惠活动本是一个用户只能享用一次,但如果注册多个账 ...
- 第三次作业(1) Visual Studio程序安装过程和练习过程
Visual Studio程序安装过程和练习过程 第一步 首先要在网上找一个VS2013的安装包,之后我安装在D盘上,C盘上也需要有5.2G空间,勾选相应的选项,才能继续安装. 安装的过程很漫长,接近 ...
- spring播放器详细设计说明书(一)
1 引言 1.1编写目的 编写目的是详细说明SPRING音乐播放器的设计使用,预期读者对象为在个人电脑上需要使用简单音乐播放器的用户.1.2项目背景 说明: a.待开发软件系统的名称为SPRING音 ...
- Software Engineering homework2
现在市面上有诸多软件,选取一类软件,请分析: Q1:此类软件是什么时候出现的,这些软件是怎么说服你(陌生人)成为它们的用户的?他们的目标都是盈利的么?他们的目标都是赚取用户的现金的么?还是别的? A1 ...
- org.springframework.beans.factory.BeanDefinitionStoreException: IOException parsing XML document from class path resource [applicationContext.xml]; nested exception is java.io.FileNotFoundException: c
//这个是 配置文件放错了地方 org.springframework.beans.factory.BeanDefinitionStoreException: IOException parsing ...
- Solution of wireless link "PCI unknown" on Centos 7.1
Pick From http://www.blogjava.net/miaoyachun/archive/2015/09/17/427366.html After Centos 7.1 tobe in ...
- IP config with netsh under windows
================================================= CHINAUNICOME.bat route delete 0.0.0.0 mask 0.0.0.0 ...
- 携程Apollo配置中心架构深度剖析
转自:http://www.uml.org.cn/wfw/201808153.asp 一.介绍 Apollo(阿波罗)[参考附录]是携程框架部研发并开源的一款生产级的配置中心产品,它能够集中管理应用在 ...
- [转帖]ASP.NET Core Web服务器 Kestrel和Http.sys 特性详解
ASP.NET Core Web服务器 Kestrel和Http.sys 特性详解 https://www.cnblogs.com/vipyoumay/p/7525478.html ASP.NET C ...