一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记

曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了……看来“学”完新东西不经常做题不写博客,就白学了 = =

我没啥智商 ,网上的FWT博客我大多看不懂,下面这篇博客是留给我我再次忘记FWT时看的,所以像我一样的没智商选手应该也能看懂!有智商选手更能看懂咯!

(写得非常匆忙,如有任何错误请在评论区指正!TAT)

什么是FWT

FWT是用来快速做位运算卷积的。位运算卷积是什么?给出两个数组\(A\)和\(B\)(长度相等且是2的整数次幂),求一个数组\(C\),满足\(A * B = C\),这个“\(*\)”的定义如下:$$A * B = C \Leftrightarrow C_k = \sum_{i\oplus j = k}A_i \cdot B_j$$ 其中“\(\oplus\)”是一种位运算,可以是与(&)、或(|)、异或(^)。

为什么要有一个变换呢?回想一下FFT,FFT求\(A*B\)时(这个“\(*\)”是多项式乘法那个卷积),是把\(A\)和\(B\)各自“变换”了一下,然后把变换后的数组按位相乘,得到“变换后的\(C\)”——\(tf(C)\),然后把\(tf(C)\)逆变换回去,得到\(C\)数组。

FWT做位运算卷积的原理也类似,想要实现快速位运算卷积,就要找到一种变换\(tf\)满足\(tf(A*B) = tf(A)\times tf(B)\),这里的“\(\times\)”表示两个数组按位相乘(和那个表示卷积的“\(*\)”不是一个符号)。

再强调一下本文中符号的定义,在下文中:

\[A * B = C \Leftrightarrow C_k = \sum_{i\oplus j = k}A_i \cdot B_j
\]

\[A \times B = C \Leftrightarrow C_i = A_i \cdot B_i
\]

用FWT解决或卷积

或卷积,就是把\(A * B = C \Leftrightarrow C_k = \sum_{i\oplus j = k}A_i \cdot B_j\)中的“\(\oplus\)”定义为按位或运算(|)。我们的目标是找到一种变换\(tf\)满足\(tf(A*B) = tf(A)\times tf(B)\),还要找到一种逆变换\(utf\),能把\(tf(C)\)变回\(C\)。

目标

  • 找到\(tf\)
  • 找到\(utf\)

找到\(tf\)

这是位运算,所以应该按位分治。

根据下标在最高位是0还是1,把\(A\)数组拆成两个数组\(A_0\)和\(A_1\),\(A_0\)是\(A\)中下标最高位是0的元素组成的数组,\(A_1\)是\(A\)中下标最高位是1的元素组成的数组——实际上,\(A_0\)就是\(A\)的前一半,\(A_1\)是\(A\)的后一半。用\(A = (A_0, A_1)\)表示这种“等式右边两个数组首尾相接就能得到等式左边的数组”的关系。

定义$$tf(A) = (tf(A_0), tf(A_1) + tf(A_0))$$

当\(A\)长度为1,无法再划分时,\(tf(A) = A\)。

对了,显然\(tf(X + Y) = tf(X) + tf(Y)\),这里“\(+\)”就是按位相加。

(这个\(tf\)是怎么找到的?这篇博客讲了讲……但是即使我知道了如何找到或卷积的\(tf\),异或卷积的我还是找不出来……还是甩出这个式子然后证明它吧。)

来证明一下\(tf(C = A * B) = tf(A) \times tf(B)\)。

当\(A, B\)长度均为1时显然。

当\(A, B\)长度大于1时 ,我们使用归纳法——可以假定“长度除以2后\(tf(C = A * B) = tf(A) \times tf(B)\)是成立的”,即$$tf(A_0*B_0) = tf(A_0) \times tf(B_0)\tf(A_1 * B_1) = tf(A_1) \times tf(B_1)\tf(A_0 * B_1) = tf(A_0) \times tf(B_1)\tf(A_1 * B_0) = tf(A_1) \times tf(B_0)$$如果我们在这四个条件的基础上能证明\(tf(C = A * B) = tf(A) \times tf(B)\),则这四个条件递归证明即可,递归到长度为1时,就直接证毕了。

那么如何证明当前这一层\(tf(C = A * B) = tf(A) \times tf(B)\)呢?

首先,$$C=(A_0 * B_0, A_1 * B_0 + A_0 * B_1 + A_1 * B_1)$$。这是可以理解的:在\(A\)中最高位是0的一个下标,和在\(B\)中最高位是0的一个下标,或起来还是0,所以他俩卷积的结果应该放在\(C_0\)中,其余三项同理。

然后从等式左边推一下,$$\begin{align}tf(C) &= (tf(A_0 * B_0), tf(A_1 * B_0 + A_0 * B_1 + A_1 * B_1) + tf(A_0 * B_0))\&=(tf(A_0B_0), tf(A_1B_0) + tf(A_0B_1) + tf(A_1 * B_1) + tf(A_0 * B_0)) \ &= (tf(A_0) \times tf(B_0), tf(A_1) \times tf(B_0) + tf(A_0) \times tf(B_1) + tf(A_1) \times tf(B_1) + tf(A_0)\times tf(B_0))\end{align*}$$

这一步是基于\(tf\)的定义以及上面的那四个条件的。

然后从等式右边推一下,$$\begin{align}tf(A) \times tf(B) &= (tf(A_0), tf(A_1) + tf(A_0)) \times (tf(B_0), tf(B_1) + tf(B_0)))\&=(tf(A_0) \times tf(B_0), tf(A_0)\times tf(B_0) + tf(A_1) \times tf(B_0) + tf(A_0) \times tf(B_1) + tf(A_1) \times tf(B_1))\end{align}$$

这一步是基于“\(\times\)”符号的意义——按位相乘得出来的。

这样一来,等式两边恰好相等诶!

所以我们已经找到了或卷积的\(tf\):$$tf(A) = (tf(A_0), tf(A_1) + tf(A_0))$$

找到\(utf\)

目标:找到一个\(utf\)使得\(utf(tf(A)) = A\)。

这相当于把上面那个式子倒着推,怎么个倒推法呢?

正着推是已知\(A = (A_0, A_1)\),求\(tf(A) = (tf(A)_0, tf(A)_1)\)。

倒着推就是已知\(tf(A) = (tf(A)_0, tf(A)_1)\),求\(utf(tf(A)) = A = (A_0, A_1) = (utf(tf(A_0)), utf(tf(A_1)))\)。

那么根据上面的\(tf(A) = (tf(A_0), tf(A_1) + tf(A_0))\),有\(tf(A)_0 = tf(A_0), tf(A)_1 = tf(A_0) + tf(A_1)\)。

所以直接得到\(tf(A_0) = tf(A)_0\), 两式相减又得到\(tf(A_1) = tf(A)_1 - tf(A)_0\)。

所以\(utf(tf(A)) = A = (A_0, A_1) = (utf(tf(A_0)), utf(tf(A_1)) = (utf(tf(A)_0), utf(tf(A)_1 - tf(A)_0))\)

将\(tf(A)\)替换成\(A\),得到\(utf(A) = (utf(A), utf(A_1) - utf(A_0))\)

这就是逆变换\(utf\)了。

总结

或卷积的FWT:

\[tf(A) = (tf(A_0), tf(A_1) + tf(A_0))
\]

\[utf(A) = (utf(A), utf(A_1) - utf(A_0))
\]

用FWT解决与卷积

与卷积和或卷积非常类似。

有\(C = (A_0*B_0 + A_0*B_1 + A_1 *B_0, A_1*B_1)\)

定义$$tf(A) = (tf(A_0) + tf(A_1), tf(A_1))$$

类似上面或卷积的证明过程可以证明它。

类似地,$$utf(A) = (utf(A_0) - utf(A_1), utf(A_1))$$

用FWT解决异或卷积

和上面的也很类似,但是异或卷积的式子更复杂一丁点。它是:

\[tf(A) = (tf(A_0) + tf(A_1), tf(A_0) - tf(A_1))
\]

\[utf(A) = (\frac{utf(A_0) + utf(A_1)}{2}, \frac{utf(A_0) - utf(A_1)}{2})
\]

证明嘛……和上面的或卷积证明也差不多!

板子

我的异或卷积板子:

ll inc(ll x, ll y){return (x += y) >= P ? x - P : x;}
ll dec(ll x, ll y){return (x -= y) < 0 ? x + P : x;}
void transform(ll *a, int n, bool inv){
for(int l = 2; l <= n; l <<= 1){
int m = l >> 1;
for(ll *p = a; p != a + n; p += l)
for(int i = 0; i < m; i++){
ll t = p[i + m];
p[i + m] = dec(p[i], t);
p[i] = inc(p[i], t);
}
if(inv)
for(int i = 0; i < n; i++)
a[i] = a[i] * inv2 % P;
}
}

异或已经是写起来最长的啦,其他两个都特别短~

一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记的更多相关文章

  1. 快速沃尔什变换 FWT 学习笔记【多项式】

    〇.前言 之前看到异或就担心是 FWT,然后才开始想别的. 这次学了 FWT 以后,以后判断应该就很快了吧? 参考资料 FWT 详解 知识点 by neither_nor 集训队论文 2015 集合幂 ...

  2. 快速沃尔什变换 (FWT)学习笔记

    证明均来自xht37 的洛谷博客 作用 在 \(OI\) 中,\(FWT\) 是用于解决对下标进行位运算卷积问题的方法. \(c_{i}=\sum_{i=j \oplus k} a_{j} b_{k} ...

  3. 快速沃尔什变换(FWT)学习笔记 + 洛谷P4717 [模板]

    FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor ...

  4. 【学习笔鸡】快速沃尔什变换FWT

    [学习笔鸡]快速沃尔什变换FWT OR的FWT 快速解决: \[ C[i]=\sum_{j|k=i} A[j]B[k] \] FWT使得我们 \[ FWT(C)=FWT(A)*FWT(B) \] 其中 ...

  5. 快速傅里叶变换(FFT)学习笔记(其一)

    再探快速傅里叶变换(FFT)学习笔记(其一) 目录 再探快速傅里叶变换(FFT)学习笔记(其一) 写在前面 为什么写这篇博客 一些约定 前置知识 多项式卷积 多项式的系数表达式和点值表达式 单位根及其 ...

  6. 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))

    也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...

  7. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  8. 快速傅里叶变换(FFT)学习笔记(其二)(NTT)

    再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 写在前面 一些约定 前置知识 同余类和剩余系 欧拉定理 阶 原根 求原根 NTT ...

  9. 快速沃尔什变换FWT

    快速沃尔什变换\(FWT\) 是一种可以快速完成集合卷积的算法. 什么是集合卷积啊? 集合卷积就是在集合运算下的卷积.比如一般而言我们算的卷积都是\(C_i=\sum_{j+k=i}A_j*B_k\) ...

随机推荐

  1. 学习angularjs的ng-hide和ng-disabled

    一,页面上有一个checkbox和一个文本框.切换checkbox能对文本框输入文本与否: <input type="checkbox" ng-model="ckS ...

  2. JS 去除重复元素的方法

    Array.prototype.del = function () { var a = {}, c = [], l = this.length; ; i < l; i++) { var b = ...

  3. Luogu P1966 火柴排队

    这还是一道比较简单的题目,稍微想一下就可以解决.终于有NOIP难度的题目了 首先我们看那个∑(ai-bi)^2的式子,发现这个的最小值就是排序不等式 所以我们只需要改变第一组火柴的顺序,使它和第二组火 ...

  4. springboot 发送邮件+模板+附件

    package com.example.demo; import org.junit.Test;import org.junit.runner.RunWith;import org.springfra ...

  5. java使用何种类型表示精确的小数?

    问题 java使用何种类型表示精确的小数? 结论 float和double类型的主要设计目标是为了科学计算和工程计算,速度快,存在精度丢失 BigDecimal用来表示任意精确浮点数运算的类,在商业应 ...

  6. Session会话与Cookie简单说明

    会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session.Cookie通过在客户端记录信息确定用户身份,Session通过在服务器端 ...

  7. cross-env简介

    是什么 运行跨平台设置和使用环境变量的脚本 出现原因 当您使用NODE_ENV =production, 来设置环境变量时,大多数Windows命令提示将会阻塞(报错). (异常是Windows上的B ...

  8. Linux内核分析——ELF文件格式分析

    ELF文件(目标文件)格式主要三种: 1)可重定向文件:文件保存着代码和适当的数据,用来和其他的目标文件一起来创建一个可执行文件或者是一个共享目标文件.(目标文件或者静态库文件,即linux通常后缀为 ...

  9. 五子棋游戏SRS文档

        SRS技术文档,包括对SRS的解释说明.SRS描述规范.软件需求规格说明书(SRS,Software Requirement Specification)是为了软件开发系统而编写的,主要用来描 ...

  10. mysql复杂查询

    所谓复杂查询,指涉及多个表.具有嵌套等复杂结构的查询.这里简要介绍典型的几种复杂查询格式. 一.连接查询 连接是区别关系与非关系系统的最重要的标志.通过连接运算符可以实现多个表查询.连接查询主要包括内 ...