1778: [Usaco2010 Hol]Dotp 驱逐猪猡

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 563  Solved: 216
[Submit][Status][Discuss]

Description

奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡。猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城。这些城市由M (1 <= M <= 44,850)条由两个不同端点A_j和B_j (1 <= A_j<= N; 1 <= B_j <= N)表示的双向道路连接。保证城市1至少连接一个其它的城市。一开始臭气弹会被放在城市1。每个小时(包括第一个小时),它有P/Q (1 <= P <=1,000,000; 1 <= Q <= 1,000,000)的概率污染它所在的城市。如果这个小时内它没有污染它所在的城市,那麽它随机地选择一条道路,在这个小时内沿着这条道路走到一个新的城市。可以离开这个城市的所有道路被选择的概率均等。因为这个臭气弹的随机的性质,奶牛们很困惑哪个城市最有可能被污染。给定一个猪猡文明的地图和臭气弹在每个小时内爆炸的概率。计算每个城市最终被污染的概率。如下例,假设这个猪猡文明有两个连接在一起的城市。臭气炸弹从城市1出发,每到一个城市,它都有1/2的概率爆炸。 1--2 可知下面这些路径是炸弹可能经过的路径(最后一个城市是臭气弹爆炸的城市): 1: 1 2: 1-2 3: 1-2-1 4: 1-2-1-2 5: 1-2-1-2-1 ... 要得到炸弹在城市1终止的概率,我们可以把上面的第1,第3,第5……条路径的概率加起来,(也就是上表奇数编号的路径)。上表中第k条路径的概率正好是(1/2)^k,也就是必须在前k-1个回合离开所在城市(每次的概率为1 - 1/2 = 1/2)并且留在最后一个城市(概率为1/2)。所以在城市1结束的概率可以表示为1/2 + (1/2)^3 + (1/2)^5 + ...。当我们无限地计算把这些项一个个加起来,我们最后会恰好得到2/3,也就是我们要求的概率,大约是0.666666667。这意味着最终停留在城市2的概率为1/3,大约为0.333333333。

Input

* 第1行: 四个由空格隔开的整数: N, M, P, 和 Q * 第2到第M+1行: 第i+1行用两个由空格隔开的整数A_j和B_j表示一条道路。

Output

* 第1到第N行: 在第i行,用一个浮点数输出城市i被摧毁的概率。误差不超过10^-6的答桉会 被接受(注意这就是说你需要至少输出6位有效数字使得答桉有效)。

Sample Input

2 1 1 2
1 2

Sample Output

0.666666667
0.333333333

HINT

 

Source

[Submit][Status][Discuss]

身边的两位巨犇说我太菜了——“居然用期望乘概率,简直是胡扯,*&^&$#$”

 #include <cstdio>
#include <cstring> const int mxn = ;
const int mxm = ; int n, m, p, q; double G[mxn][mxn]; struct edge {
int x, y;
}E[mxm]; int cnt[mxn]; double K, F[mxn]; signed main(void) {
scanf("%d%d%d%d", &n, &m, &p, &q); K = 1.0 * p / q; for (int i = ; i <= m; ++i)
scanf("%d%d", &E[i].x, &E[i].y); for (int i = ; i <= m; ++i)
++cnt[E[i].x], ++cnt[E[i].y]; for (int i = ; i <= m; ++i)
G[E[i].x][E[i].y] -= (1.0 - K) / cnt[E[i].y],
G[E[i].y][E[i].x] -= (1.0 - K) / cnt[E[i].x]; for (int i = ; i <= n; ++i)
G[i][i] = 1.0; G[][n + ] = 1.0; for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)if (i != j){
double t = G[j][i] / G[i][i];
for (int k = ; k <= n + ; ++k)
G[j][k] -= t * G[i][k];
} for (int i = ; i <= n; ++i)
F[i] = G[i][n + ] / G[i][i]; for (int i = ; i <= n; ++i)
printf("%.9lf\n", F[i] * K);
}

@Author: YouSiki

BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡的更多相关文章

  1. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]

    1778: [Usaco2010 Hol]Dotp 驱逐猪猡 题意:一个炸弹从1出发p/q的概率爆炸,否则等概率走向相邻的点.求在每个点爆炸的概率 高斯消元求不爆炸到达每个点的概率,然后在一个点爆炸就 ...

  2. BZOJ 1778 [Usaco2010 Hol]Dotp 驱逐猪猡 ——期望DP

    思路和BZOJ 博物馆很像. 同样是高斯消元 #include <map> #include <ctime> #include <cmath> #include & ...

  3. bzoj 1778 [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元)

    [题意] 炸弹从1开始运动,每次有P/Q的概率爆炸,否则等概率沿边移动,问在每个城市爆炸的概率. [思路] 设M表示移动一次后i->j的概率.Mk为移动k次后的概率,则有: Mk=M^k 设S= ...

  4. bzoj 1778: [Usaco2010 Hol]Dotp 驱逐猪猡【dp+高斯消元】

    算是比较经典的高斯消元应用了 设f[i]为i点答案,那么dp转移为f[u]=Σf[v]*(1-p/q)/d[v],意思是在u点爆炸可以从与u相连的v点转移过来 然后因为所有f都是未知数,高斯消元即可( ...

  5. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 (高斯消元)

    题面 题目传送门 分析 令爆炸概率为PPP.设 f(i)=∑k=0∞pk(i)\large f(i)=\sum_{k=0}^{\infty}p_k(i)f(i)=∑k=0∞​pk​(i),pk(i)p ...

  6. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 概率与期望+高斯消元

    这个还挺友好的,自己相对轻松能想出来~令 $f[i]$ 表示起点到点 $i$ 的期望次数,则 $ans[i]=f[i]\times \frac{p}{q}$ #include <cmath> ...

  7. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元+期望dp)

    传送门 解题思路 设\(f(x)\)表示到\(x\)这个点的期望次数,那么转移方程为\(f(x)=\sum\frac{f(u)*(1 - \frac{p}{q})}{deg(u)}\),其中\(u\) ...

  8. 【BZOJ】1778: [Usaco2010 Hol]Dotp 驱逐猪猡

    [题意]给定无向图,炸弹开始在1,在每个点爆炸概率Q=p/q,不爆炸则等概率往邻点走,求在每个点爆炸的概率.n<=300. [算法]概率+高斯消元 [题解]很直接的会考虑假设每个点爆炸的概率,无 ...

  9. BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元

    BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...

随机推荐

  1. 第二次作业 对VC++6.0编译软件的评价

    首先这个软件伴随着我们很长时间了,它是我们一上大学最先接触的,也是应用相当多的一个软件,其实在最初的时候,我对编译软件的理解非常有限,觉得它能实现一个代码的功能十分神奇的一件事情,虽然彼时我们写的代码 ...

  2. combox的基本应用

    easyui-combox:控件的初始化: 可以在其中进行文字的筛选功能(过滤), 动态加载数据的方法. <!DOCTYPE html><html lang="en&quo ...

  3. git使用(2)

    1.远程仓库 a SSHKEY 第1步:创建SSH Key.在用户主目录下,看看有没有.ssh目录,如果有,再看看这个目录下有没有id_rsa和id_rsa.pub这两个文件,如果已经有了,可直接跳到 ...

  4. Linux内核分析第五周学习总结

    扒开系统调用的三层皮(下) 20135237朱国庆+ 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/UST ...

  5. <四则运算>第二次冲刺

    这一次冲刺的主要内容是完善我们的界面,是我们的APP界面更规划更标准一点, 然后还要添加一些新算法. 距离客户的需求已经一半了. 代码正在完善中,稍后上传...

  6. Post Tuned Hashing,PTH

    [ACM 2018] Post Tuned Hashing_A New Approach to Indexing High-dimensional Data [paper] [code] Zhendo ...

  7. ABP框架用Dapper实现通过SQL访问数据库

    ABP的框架(2) - 访问数据库   为了防止不提供原网址的转载,特在这里加上原文链接:http://www.cnblogs.com/skabyy/p/7517397.html 本篇我们实现数据库的 ...

  8. 实验十一 团队作业7—团队项目设计完善&编码测试

    实验十一 团队作业7—团队项目设计完善&编码测试 实验时间 2018-6-8 Deadline: 2018-6-20 10:00,以团队随笔博文提交至班级博客的时间为准. 评分标准: 按时交 ...

  9. shell脚本--显示文本内容

    shell脚本显示文本内容及相关的常用命令有cat.more.less.head.tail.nl 首先是cat,cat最常用的就是一次性显示文件的所有内容,如果一个文件的内容很多的话,那么就不是很方便 ...

  10. ExtJS Tab里放Grid高度自适应问题,官方Perfect方案。

    出处:http://docs.sencha.com/extjs/4.2.1/extjs-build/examples/layout-browser/layouts/combination.js // ...