BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡
1778: [Usaco2010 Hol]Dotp 驱逐猪猡
Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 563  Solved: 216
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1 2
Sample Output
0.333333333
HINT
Source
身边的两位巨犇说我太菜了——“居然用期望乘概率,简直是胡扯,*&^&$#$”
#include <cstdio>
#include <cstring> const int mxn = ;
const int mxm = ; int n, m, p, q; double G[mxn][mxn]; struct edge {
int x, y;
}E[mxm]; int cnt[mxn]; double K, F[mxn]; signed main(void) {
scanf("%d%d%d%d", &n, &m, &p, &q); K = 1.0 * p / q; for (int i = ; i <= m; ++i)
scanf("%d%d", &E[i].x, &E[i].y); for (int i = ; i <= m; ++i)
++cnt[E[i].x], ++cnt[E[i].y]; for (int i = ; i <= m; ++i)
G[E[i].x][E[i].y] -= (1.0 - K) / cnt[E[i].y],
G[E[i].y][E[i].x] -= (1.0 - K) / cnt[E[i].x]; for (int i = ; i <= n; ++i)
G[i][i] = 1.0; G[][n + ] = 1.0; for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)if (i != j){
double t = G[j][i] / G[i][i];
for (int k = ; k <= n + ; ++k)
G[j][k] -= t * G[i][k];
} for (int i = ; i <= n; ++i)
F[i] = G[i][n + ] / G[i][i]; for (int i = ; i <= n; ++i)
printf("%.9lf\n", F[i] * K);
}
@Author: YouSiki
BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡的更多相关文章
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]
		1778: [Usaco2010 Hol]Dotp 驱逐猪猡 题意:一个炸弹从1出发p/q的概率爆炸,否则等概率走向相邻的点.求在每个点爆炸的概率 高斯消元求不爆炸到达每个点的概率,然后在一个点爆炸就 ... 
- BZOJ 1778 [Usaco2010 Hol]Dotp 驱逐猪猡 ——期望DP
		思路和BZOJ 博物馆很像. 同样是高斯消元 #include <map> #include <ctime> #include <cmath> #include & ... 
- bzoj 1778 [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元)
		[题意] 炸弹从1开始运动,每次有P/Q的概率爆炸,否则等概率沿边移动,问在每个城市爆炸的概率. [思路] 设M表示移动一次后i->j的概率.Mk为移动k次后的概率,则有: Mk=M^k 设S= ... 
- bzoj 1778: [Usaco2010 Hol]Dotp 驱逐猪猡【dp+高斯消元】
		算是比较经典的高斯消元应用了 设f[i]为i点答案,那么dp转移为f[u]=Σf[v]*(1-p/q)/d[v],意思是在u点爆炸可以从与u相连的v点转移过来 然后因为所有f都是未知数,高斯消元即可( ... 
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 (高斯消元)
		题面 题目传送门 分析 令爆炸概率为PPP.设 f(i)=∑k=0∞pk(i)\large f(i)=\sum_{k=0}^{\infty}p_k(i)f(i)=∑k=0∞pk(i),pk(i)p ... 
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 概率与期望+高斯消元
		这个还挺友好的,自己相对轻松能想出来~令 $f[i]$ 表示起点到点 $i$ 的期望次数,则 $ans[i]=f[i]\times \frac{p}{q}$ #include <cmath> ... 
- BZOJ  1778: [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元+期望dp)
		传送门 解题思路 设\(f(x)\)表示到\(x\)这个点的期望次数,那么转移方程为\(f(x)=\sum\frac{f(u)*(1 - \frac{p}{q})}{deg(u)}\),其中\(u\) ... 
- 【BZOJ】1778: [Usaco2010 Hol]Dotp 驱逐猪猡
		[题意]给定无向图,炸弹开始在1,在每个点爆炸概率Q=p/q,不爆炸则等概率往邻点走,求在每个点爆炸的概率.n<=300. [算法]概率+高斯消元 [题解]很直接的会考虑假设每个点爆炸的概率,无 ... 
- BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元
		BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ... 
随机推荐
- 第二次作业 对VC++6.0编译软件的评价
			首先这个软件伴随着我们很长时间了,它是我们一上大学最先接触的,也是应用相当多的一个软件,其实在最初的时候,我对编译软件的理解非常有限,觉得它能实现一个代码的功能十分神奇的一件事情,虽然彼时我们写的代码 ... 
- combox的基本应用
			easyui-combox:控件的初始化: 可以在其中进行文字的筛选功能(过滤), 动态加载数据的方法. <!DOCTYPE html><html lang="en&quo ... 
- git使用(2)
			1.远程仓库 a SSHKEY 第1步:创建SSH Key.在用户主目录下,看看有没有.ssh目录,如果有,再看看这个目录下有没有id_rsa和id_rsa.pub这两个文件,如果已经有了,可直接跳到 ... 
- Linux内核分析第五周学习总结
			扒开系统调用的三层皮(下) 20135237朱国庆+ 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/UST ... 
- <四则运算>第二次冲刺
			这一次冲刺的主要内容是完善我们的界面,是我们的APP界面更规划更标准一点, 然后还要添加一些新算法. 距离客户的需求已经一半了. 代码正在完善中,稍后上传... 
- Post Tuned Hashing,PTH
			[ACM 2018] Post Tuned Hashing_A New Approach to Indexing High-dimensional Data [paper] [code] Zhendo ... 
- ABP框架用Dapper实现通过SQL访问数据库
			ABP的框架(2) - 访问数据库 为了防止不提供原网址的转载,特在这里加上原文链接:http://www.cnblogs.com/skabyy/p/7517397.html 本篇我们实现数据库的 ... 
- 实验十一 团队作业7—团队项目设计完善&编码测试
			实验十一 团队作业7—团队项目设计完善&编码测试 实验时间 2018-6-8 Deadline: 2018-6-20 10:00,以团队随笔博文提交至班级博客的时间为准. 评分标准: 按时交 ... 
- shell脚本--显示文本内容
			shell脚本显示文本内容及相关的常用命令有cat.more.less.head.tail.nl 首先是cat,cat最常用的就是一次性显示文件的所有内容,如果一个文件的内容很多的话,那么就不是很方便 ... 
- ExtJS Tab里放Grid高度自适应问题,官方Perfect方案。
			出处:http://docs.sencha.com/extjs/4.2.1/extjs-build/examples/layout-browser/layouts/combination.js // ... 
