T^T Saffah大神照样刷我这样诚心诚意想做一套NOIP模拟题的蒟蒻.

第一题 九九归一

好diao的名字...

题意就是给定一队$n,q$,求在模$n$意义下一个数$x$自乘的循环节长度.

当$x=0$时候输出$0$是吧...

.................................................实在是太弱了....................................................

连个思路都没有.....

再看一遍题目

萌蛋在练习模n意义下的乘法时发现,总有一些数,在自乘若干次以后,会变成1。例如n=7,那么5×5 mod 7=4,4×5 mod 7=6,6×5 mod 7=2,2×5 mod 7=3,3×5 mod 7=1。如果继续乘下去,就会陷入循环当中。萌蛋还发现,这个循环的长度经常会是φ(n),即小于n且与n互质的正整数的个数。例如,φ(7)=6,而上述循环的长度也是6,因为5,4,6,2,3,1共有6个数。再如n=6,那么5×5 mod 6=1。这个循环的长度很短,只有2,而恰好φ(6)=2。然而,对于某些情况,虽然循环的长度可以是φ(n),但存在比φ(n)更小的长度:例如n=7,而2×2 mod 7=4,4×2 mod 7=1,循环的长度只有3。当然,6也可以是一个循环的长度。假设已知了n,我们称数a神奇的,当且仅当关于数a的循环长度可以是φ(n),而且不存在比φ(n)更小长度的循环。例如对于n=7,5是神奇的,而2不是神奇的。现在给出n和q次询问,每次询问给出a,问a是否是神奇的。

这个循环长度为φ(n)的条件...既然$x^{φ\left( n\right)}\equiv 1 \pmod{n}$,看起来很像欧拉定理...大声告诉我是不是!!!

光知道这个有个P用...真是书到用时方恨少...

还是等Saffah大神的官方题解吧

第二题

似乎有种会做了的感觉...

对于每个节点,将它的每子树节点的w值的和一乘完事...

好吧没时间了.

#include <cstdio>
#define MOD 1000000007
long long fat[200000],w[200000],f[200000],sub[200000],totw[200000],n,p,i,sum;
long long q[200000],qh,qt;
int main(){
scanf("%lld %lld",&n,w+1);
for(i=2;i<=n;++i){
scanf("%lld %lld",fat+i,w+i);
++sub[fat[i]];
}
for(i=1;i<=n;++i){
f[i]=0;
if(!sub[i]){
q[qt++]=i;
totw[i]=0;
f[i]=0;
}
}
while(qh!=qt){
i=q[qh++];
f[i]+=(((w[i]*w[i])%MOD)*(w[i]+totw[i]*2))%MOD;
totw[i]+=w[i];
sum=(sum+f[i])%MOD;
f[fat[i]]+=totw[i]*totw[fat[i]]*w[fat[i]]*2;
totw[fat[i]]+=totw[i];
f[fat[i]]%=MOD;
--sub[fat[i]];
if(!sub[fat[i]]) q[qt++]=fat[i];
}
printf("%lld\n", sum);
return 0;
}

-----UPDATE: 似乎没有Mod到位...改一下-----

#include <cstdio>
#include <cstring>
#define MOD 1000000007
long long fat[200000],w[200000],f[200000],sub[200000],totw[200000],n,p,i,sum;
long long q[200000],qh,qt;
int main(int argc,char const *argv[]){
scanf("%lld %lld",&n,w+1);
for(i=2;i<=n;++i){
scanf("%lld %lld",fat+i,w+i);
++sub[fat[i]];
}
for(i=1;i<=n;++i){
f[i]=0;
if(!sub[i]){
q[qt++]=i;
totw[i]=0;
f[i]=0;
}
}
while(qh!=qt){
i=q[qh++];
f[i]+=(((w[i]*w[i])%MOD)*((w[i]+totw[i]*2)%MOD))%MOD;
totw[i]+=w[i];
totw[i]%=MOD;
sum=(sum+f[i])%MOD;
f[fat[i]]+=(totw[i]*totw[fat[i]])%MOD*w[fat[i]]*2;
totw[fat[i]]+=totw[i];
totw[fat[i]]%=MOD;
f[fat[i]]%=MOD;
--sub[fat[i]];
if(!sub[fat[i]]) q[qt++]=fat[i];
}
printf("%lld\n", sum);
return 0;
}

这个程序是AC的.

CH round #55 Streaming #6的更多相关文章

  1. CH Round #55 - Streaming #6 (NOIP模拟赛day2)解题报告

    T1九九归一 描述 萌蛋在练习模n意义下的乘法时发现,总有一些数,在自乘若干次以后,会变成1.例如n=7,那么5×5 mod 7=4,4×5 mod 7=6,6×5 mod 7=2,2×5 mod 7 ...

  2. CH Round #55 - Streaming #6 (NOIP模拟赛day2)

    A.九九归一 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2355%20-%20Streaming%20%236%20(NOIP模拟赛day2)/九九归一 题 ...

  3. CH Round #55 - Streaming #6 (NOIP模拟赛day2)(被虐哭)

    http://ch.ezoj.tk/contest/CH%20Round%20%2355%20-%20Streaming%20%236%20%28NOIP%E6%A8%A1%E6%8B%9F%E8%B ...

  4. CH Round #54 - Streaming #5 (NOIP模拟赛Day1)解题报告

    最近参加了很多CH上的比赛呢~Rating--了..题目各种跪烂.各种膜拜大神OTZZZ T1珠 描述 萌蛋有n颗珠子,每一颗珠子都写有一个数字.萌蛋把它们用线串成了环.我们称一个数字串是有趣的,当且 ...

  5. CH Round #49 - Streaming #4 (NOIP模拟赛Day2)

    A.二叉树的的根 题目:http://www.contesthunter.org/contest/CH%20Round%20%2349%20-%20Streaming%20%234%20(NOIP 模 ...

  6. CH Round #48 - Streaming #3 (NOIP模拟赛Day1)

    A.数三角形 题目:http://www.contesthunter.org/contest/CH%20Round%20%2348%20-%20Streaming%20%233%20(NOIP模拟赛D ...

  7. CH Round #54 - Streaming #5 (NOIP模拟赛Day1)

    A.珠 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2354%20-%20Streaming%20%235%20(NOIP模拟赛Day1)/珠 题解:sb题, ...

  8. CH Round #54 - Streaming #5 (NOIP模拟赛Day1)(被虐瞎)

    http://ch.ezoj.tk/contest/CH%20Round%20%2354%20-%20Streaming%20%235%20%28NOIP%E6%A8%A1%E6%8B%9F%E8%B ...

  9. CH Round #52 还教室[线段树 方差]

    还教室 CH Round #52 - Thinking Bear #1 (NOIP模拟赛) [引子]还记得 NOIP 2012 提高组 Day2 中的借教室吗?时光飞逝,光阴荏苒,两年过去了,曾经借教 ...

随机推荐

  1. neutron中的dhcp功能

    1. 分布式dhcp 特点: 1)一个dhcp port对应多个host上的tap设备. 2)基于port event的network与agent的绑定与解绑定,即创建tap设备.namespace. ...

  2. poj3692 最大点权独立集/最大独立集

    题意:有男孩和女孩,男孩之间全部认识,女孩之间全部认识,一部分男孩和女孩认识,现在希望选出一些孩子,这些孩子都相互认识. 方法:正的做不好做,观察他的补图,补图之间无关系的边就是原图有关系的.补图中的 ...

  3. Java设计模式-建造者模式(Builder)

    将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示. [构建与表示分离,同构建不同表示] 与抽象工厂的区别:在建造者模式里,有个指导者,由指导者来管理建造者,用户是与指导者联系的,指 ...

  4. 【转】set容器的基本操作

    set的基本操作:begin()         返回指向第一个元素的迭代器clear()         清除所有元素count()         返回某个值元素的个数empty()        ...

  5. linux java cpu 100%

    1.用top找到最耗资源的进程id [ bin]# toptop - 16:56:14 up 119 days, 6:17, 7 users, load average: 2.04, 2.07, 2. ...

  6. 【转】KMP算法

    转载请注明来源,并包含相关链接.http://www.cnblogs.com/yjiyjige/p/3263858.html 网上有很多讲解KMP算法的博客,我就不浪费时间再写一份了.直接推荐一个当初 ...

  7. shell脚本等的操作

    1.命令替换:`` 反向单引号,也称重音符.键盘上和~键在一起的那个键呦,千万不要敲成单引号. A. 使用了``后,shell首先替换输出中``括起来的date命令,然后执行整个输出命令. B.命令替 ...

  8. PHP防止重复提交表单(helloweba网站经典实例)

    <?php session_start(); header("Content-Type:text/html;charset:utf8"); function set_toke ...

  9. JavaScript模块化学习基础

    http://www.ruanyifeng.com/blog/2012/10/javascript_module.html 一.原始写法 模块就是实现特定功能的一组方法. 不同函数简单放在一起就算一个 ...

  10. hdu 2187 悼念512汶川大地震遇难同胞——老人是真饿了

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2187 题目简问: 解题思路: 已知给出了 总钱数 和 一共的种类 1. 对给出的大米,按照价格进行升序 ...