Floyd判最小环算法模板
算法思想:如果存在最小环,会在编号最大的点u更新最短路径前找到这个环,发现的方法是,更新最短路径前,遍历i,j点对,一定会发现某对i到j的最短路径长度dis[i][j]+mp[j][u]+mp[u][i] != INF,这时i,j是图中挨着u的两个点,因为在之前最短路更新过程中,u没有参与更新,所以dis[i][j]所表示的路径中不会出现u,如果成立,则一定是一个环。用Floyd算法来实现。但是对于负环此算法失效,因为有负环时,dis[i][j]已经不能保证i到j的路径上不会经过同一个点多次了。
算法代码:
int Floyd_MinCircle()
{
int Mincircle = Mod;
int i,j,k;
for(k=;k<=n;k++)
{
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if(dis[i][j] != Mod && mp[j][k] != Mod && mp[k][i] != Mod && dis[i][j] + mp[j][k] + mp[k][i] < Mincircle)
Mincircle = dis[i][j] + mp[j][k] + mp[k][i];
}
}
//正常Floyd
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if(dis[i][k] != Mod && dis[k][j] != Mod && dis[i][k] + dis[k][j] < dis[i][j])
{
dis[i][j] = dis[i][k] + dis[k][j];
pre[i][j] = pre[k][j];
}
}
}
}
return Mincircle;
}
Floyd判最小环算法模板的更多相关文章
- floyd求最小环 模板
http://www.cnblogs.com/Yz81128/archive/2012/08/15/2640940.html 求最小环 floyd求最小环 2011-08-14 9:42 1 定义: ...
- SGU 455 Sequence analysis(Cycle detection,floyd判圈算法)
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=455 Due to the slow 'mod' and 'div' operati ...
- UVA 11549 CALCULATOR CONUNDRUM(Floyd判圈算法)
CALCULATOR CONUNDRUM Alice got a hold of an old calculator that can display n digits. She was bore ...
- UVA 11549 Calculator Conundrum (Floyd判圈算法)
题意:有个老式计算器,每次只能记住一个数字的前n位.现在输入一个整数k,然后反复平方,一直做下去,能得到的最大数是多少.例如,n=1,k=6,那么一次显示:6,3,9,1... 思路:这个题一定会出现 ...
- leetcode202(Floyd判圈算法(龟兔赛跑算法))
Write an algorithm to determine if a number is "happy". 写出一个算法确定一个数是不是快乐数. A happy number ...
- Floyd判圈算法
Floyd判圈算法 leetcode 上 编号为202 的happy number 问题,有点意思.happy number 的定义为: A happy number is a number defi ...
- Codeforces Gym 101252D&&floyd判圈算法学习笔记
一句话题意:x0=1,xi+1=(Axi+xi%B)%C,如果x序列中存在最早的两个相同的元素,输出第二次出现的位置,若在2e7内无解则输出-1. 题解:都不到100天就AFO了才来学这floyd判圈 ...
- Floyd判断环算法总结
Floyd判断环算法 全名Floyd’s cycle detection Algorithm, 又叫龟兔赛跑算法(Floyd's Tortoise and Hare),常用于链表.数组转化成链表的题目 ...
- Floyd判圈算法 UVA 11549 - Calculator Conundrum
题意:给定一个数k,每次计算k的平方,然后截取最高的n位,然后不断重复这两个步骤,问这样可以得到的最大的数是多少? Floyd判圈算法:这个算法用在循环问题中,例如这个题目中,在不断重复中,一定有一个 ...
随机推荐
- C语言范例学习02
第二章 指针 算是重点吧,这也是C语言的特色啊,直接访问物理存储. 重点: 指针就是一个存放它指向变量地址的变量,好绕口. 区分*在定义是与引用是的作用. 区分*.&的不同. 指针 ...
- webpack学习(入门基础)
webpack的学习webpack是什么?1:加载模块(将JS.sass/less.图片等作为模块来处理使用) 2:进行打包 webpack的优势?1:webpack以commonJS(JS的规范)的 ...
- GridView1事件
1 protected void GridView1_DataBinding(object sender, EventArgs e) { 该事件当服务器控件绑定数据时发生. }2 protected ...
- Force.com微信企业号开发系列(一) - 启用二次验证
微信于9月份推出企业号后引起了业界不小的反响,许多企业都在思索企业号将如何影响企业的运营,从本文开始,我将详细阐述微信企业号开发的相关知识,而本文将着重介绍如何实现更高安全机制的二次验证. 申请企业体 ...
- iOS-多线程--介绍NSThread和GCD及其它们的线程通讯示例
前言:下面就不一一列出 pthread.NSThread.GCD.NSOperation 的完整的各种方法了,只分别将最常用的列出来,以便偶尔瞄一眼. 一.NSThread 1> 线程间的通讯/ ...
- DP大作战—组合背包
题目描述 组合背包:有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包). DD大牛的伪代码 for i = 1 to N if 第i件物品属 ...
- 如何写BaseDomain
上图摘自<Spring3.x企业应用开发实战> 提到了使用org.apache.commons.lang3.builder ToStringBuilder进行toString方法的统一. ...
- android基础开发之WebView
WebView 是android平台沟通 http & H5 页面的桥梁. 但是google对这块的表述不是很清晰,而且SDK里面基本看不到源码,只有一个接口而已. 传送:http://dev ...
- Linux平台卸载MySQL总结【转】
最近用到了mysql主从,顺手看到了这篇文章,拿出来分享一下. 转自:http://www.cnblogs.com/kerrycode/p/4364465.html 潇湘隐者 RPM包安装方式的MyS ...
- ubuntu14.04下nodejs + npm + bower的安装、调试和部署
1. 简介 本文介绍ubuntu14.04下nodejs+npm+bower的安装.调试和部署 参考文档 https://docs.npmjs.com/getting-started https: ...