Caffe学习系列(6):Blob,Layer and Net以及对应配置文件的编写
深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的,以及如何在层之间通讯的。
1、blob
Blobs封装了运行时的数据信息,提供了CPU和GPU的同步。从数学上来说, Blob就是一个N维数组。它是caffe中的数据操作基本单位,就像matlab中以矩阵为基本操作对象一样。只是矩阵是二维的,而Blob是N维的。N可以是2,3,4等等。对于图片数据来说,Blob可以表示为(N*C*H*W)这样一个4D数组。其中N表示图片的数量,C表示图片的通道数,H和W分别表示图片的高度和宽度。当然,除了图片数据,Blob也可以用于非图片数据。比如传统的多层感知机,就是比较简单的全连接网络,用2D的Blob,调用innerProduct层来计算就可以了。
在模型中设定的参数,也是用Blob来表示和运算。它的维度会根据参数的类型不同而不同。比如:在一个卷积层中,输入一张3通道图片,有96个卷积核,每个核大小为11*11,因此这个Blob是96*3*11*11. 而在一个全连接层中,假设输入1024通道图片,输出1000个数据,则Blob为1000*1024
2、layer
层是网络模型的组成要素和计算的基本单位。层的类型比较多,如Data,Convolution,Pooling,ReLU,Softmax-loss,Accuracy等,一个层的定义大至如下图:

从bottom进行数据的输入 ,计算后,通过top进行输出。图中的黄色多边形表示输入输出的数据,蓝色矩形表示层。
每一种类型的层都定义了三种关键的计算:setup,forward and backword
setup: 层的建立和初始化,以及在整个模型中的连接初始化。
forward: 从bottom得到输入数据,进行计算,并将计算结果送到top,进行输出。
backward: 从层的输出端top得到数据的梯度,计算当前层的梯度,并将计算结果送到bottom,向前传递。
3、Net
就像搭积木一样,一个net由多个layer组合而成。

name: "LogReg"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
data_param {
source: "input_leveldb"
batch_size: 64
}
}
layer {
name: "ip"
type: "InnerProduct"
bottom: "data"
top: "ip"
inner_product_param {
num_output: 2
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip"
bottom: "label"
top: "loss"
}
第一行将这个模型取名为LogReg, 然后是三个layer的定义,参数都比较简单,只列出必须的参数。具体的参数定义可参见本系列的前几篇文章。
Caffe学习系列(6):Blob,Layer and Net以及对应配置文件的编写的更多相关文章
- Caffe 学习系列
学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...
- Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...
- Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- 转 Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- 转 Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- Caffe学习系列(12):训练和测试自己的图片--linux平台
Caffe学习系列(12):训练和测试自己的图片 学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...
- Caffe学习系列(22):caffe图形化操作工具digits运行实例
上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...
- Caffe学习系列(21):caffe图形化操作工具digits的安装与运行
经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http:/ ...
随机推荐
- 使用 SharedPreferences 实现数据的存储和读取
在开发的过程中我们必须遇到的就是如何对用户的数据进行有效的存储以及读取.我们举个例子,现在我们使用app,当我们登陆一个账号的时候选择记住密码软件就会记住我们的账号以及密码,我们退出当前账号,就可以直 ...
- Cornerstone无法上传静态库文件(.a文件)
在用Cornerstone同步文件时出现一个错误 检查后发现是缺少了一个文件 查询了网上的资料后发现是Cornerstone自动忽略了.a文件,所以上传到svn服务器时.a文件不会跟随工程一起传上去, ...
- iOS之UI--Quartz2D的入门应用--重绘下载圆形进度条
*:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !important; } ...
- linux NFS服务器安装与配置 思路
一,nfs服务优缺点 NFS 是Network File System的缩写,即网络文件系统,可以让不同的客户端挂载使用同一个目录,作为共享存储使用,这样可以保证不同的节点客户端数据一致性,在集群架构 ...
- 开源项目go2o - golang版的o2o项目
发一个github上唯一用golang实现的o2o项目 What's Go2o Golang combine simple o2o DDD domain-driven design realizati ...
- 关于移动端click事件绑定的一个细节
click是最常见的点击事件,但是对于移动终端,比如手机,一般都是以touch事件代替的,而click事件在手机也是生效的,只是会有1-2秒左右的延迟,那么当你想要用click而非touch事件的时候 ...
- jQuery 插件开发文章收集
A jQuery plugin boilerplate http://jonathannicol.com/blog/2012/05/06/a-jquery-plugin-boilerplate/ jQ ...
- cocos2d-x之场景转换特效
bool HelloWorld::init() { if ( !Layer::init() ) { return false; } Size visibleSize = Director::getIn ...
- MFC 窗口分割
动态分割窗口: BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT lpcs, CCreateContext* pContext) { , , CSize(, ...
- centos7 + php7 lamp全套最新版本配置,还有mongodb和redis
我是个懒人,能yum就yum啦 所有软件的版本一直会升级,注意自己当时的版本是不是已经更新了. 首先装centos7 如果你忘了设置swap分区,下面的文章可以教你怎么补一个上去: http://ww ...