AD8275 Driver Amplifiers For Analog-To-Digital Converters
Driver Amplifiers For Analog-To-Digital Converters
What amplifiers are used to drive analog-to-digital converters (ADCs)?
Possibilities include single-ended and differential inputs and outputs,
plus voltage feedback (VFB) or current feedback (CFB) in the control loop.
Specialized amplifiers may provide level shifting, interstage isolation, single-ended to differential conversion,
differential to single-ended conversion, plus attenuation or gain.
What are the considerations with VFB and CFB amplifiers?
With CFBs, closed-loop gain is largely independent of frequency.
Also, CFB amps provide faster slew rate and lower distortion and perform well at higher gains than VFB amps.
VFBs can offer lower noise and better dc performance than CFB amps.
Other tradeoffs lie in design constraints. With a VFB op amp, the circuit designer
has considerable freedom in choosing the value of the feedback resistor, although higher resistance values may limit stability.
CFB amplifier datasheets specify the feedback resistor values.
CFBs therefore lend themselves to applications that require higher gain levels.
What are the advantages of differential ADC drivers?
These drivers facilitate singleended-to-differential and differential-to-differential conversions,
common-mode level shifting, and amplification of differential signals.
They also exhibit lower distortion and faster settling time than singleended drivers.
How can a differential VFB ADC driver differ from a single-ended amplifier?
In addition to the usual inverting and non-inverting inputs, some differential VFB ADC drivers have another input,
VOCM, that shifts the commonmode voltage of the differential output (Fig. 1)
Like a VFB op amp, closed-loop gain is set by means of input and feedback resistances, but there must be separate,
matched resistors for the inverting and non-inverting inputs.
The internal common-mode feedback loop produces outputs that are highly balanced
over a wide frequency range without requiring tightly matched external components.
Thus, differential outputs are very close to the ideal of being identical in amplitude and are exactly 180° out of phase.
Also, if it is necessary, preserving the dc content of a signal can be accomplished via the VOCM function.
When would I need a single-ended, attenuating, level-translating ADC driver? How does it work?
Industrial applications often involve sensors driven by ±10-V signals.
That’s a problem with single-ended input ADCs fabricated to today’s smaller design rules because those ADCs are constrained to a smaller input signal swing.
A level-translating ADC driver takes a large signal, reduces the amplitude, and level-shifts the output commonmode voltage
so it is compatible with low-voltage, single-supply ADCs (Fig. 2).
For example, a 20-V p-p (±10-V) input signal riding on 0 V might be converted to a 4-V p-p signal riding on 2.5 V.
There are a number of other ways to perform level-translation.
It has been accomplished using multiple amplifiers, single differential drivers like those described above, or ADC drivers designed for level translation.
The approach using a single differential driver is simpler than the multi-amplifier approach, and the specialfunction level translation driver approach is simpler yet.
Such amps use internally lasertrimmed resistors, ensuring high gain accuracy, along with high common-mode rejection and low offset.
A final advantage is that, since the amp and ADC use the same supply voltage as the ADC, there is no need for multiple power supplies.
If a driver has a 1-GHz, –3-dB bandwidth, can I use it at that frequency to drive converter inputs?
If you’re driving a high-resolution ADC, look beyond the –3-dB spec and consider gain flatness and,
in particular, harmonic distortion as a function of frequency.
Recall that in a VFB amp, the –3-dB bandwidth figure simply reflects the half-power point after the amp’s open-loop gain starts its –6-dB/ octave roll-off.
That provides a rough figure for comparing amplifiers.
Your concern as a mixed-signal circuit designer must be to minimize the effect of amplifier distortion on the ADC’s effective number of bits (ENOB) performance.
ENOB is a function of signal-to-noise ratio (SNR) + distortion (SINAD) across the whole analog signal chain:
ENOB = (SINAD – 1.76)/6.02.
So, look to the data sheet graphs of harmonic distortion to make your decision.
Why would I want to use an active driver instead of a passive transformer?
The main reasons are to get better pass-band flatness and to isolate the signal from the noisy ADC input.
Transformers have a rather “lumpy” frequency response.
An amplifier should produce less variability, typically ±0.1 dB over the frequency range.
If the design calls for wideband gain, an amplifier provides a better match than a transformer to the ADC’s inputs.
Still looking at frequency response, some amplifiers provide dc coupling.
Transformers can’t deal with slowly varying signals.
Because transformers are passive devices and provide no interstage isolation,
noise generated on the secondary coil of the transformer from the ADC input will pass through it back to the original signal source.
In contrast, amplifiers buffer the signal source with a low output impedance,
providing 70 to 80 dB of interstage isolation from the ADC input back to the original signal source.
On the other hand, a consideration that favors transformers is that at higher frequencies,
they may maintain better SNR and spurious-free dynamic range (SFDR).
Nevertheless, within the first or second Nyquist zone, a transformer or an amplifier can be used.
AD8275 Driver Amplifiers For Analog-To-Digital Converters的更多相关文章
- Voltage Translation for Analog to Digital Interface ADC
Voltage Translation for Analog to Digital Interface 孕龙逻辑分析仪 ZeroPlus Logic Analyzer How to modify an ...
- Fully Digital Implemented Delta-Sigma Analog to Digital Converter
http://www.design-reuse.com/articles/14886/fully-digital-implemented-delta-sigma-analog-to-digital-c ...
- asm335x系列adc和触摸屏驱动(转)
An analog-to-digital converter (abbreviated ADC) is a device that uses sampling to convert a continu ...
- Analog/digital converter (ADC)
1.ADC1 and ADC2 are 10-bit successive approximation Anolog to Digital Converters. 所谓successive appro ...
- STM8S——Analog/digital converter (ADC)
1.ADC1 and ADC2 are 10-bit successive approximation Anolog to Digital Converters. 所谓successive appro ...
- How to implement *All-Digital* analog-to-digital converters in FPGAs and ASICs
When we engineers look at the complexity of system design these days, we are challenged with crammin ...
- PatentTips - Universal RAID Class Driver
BACKGROUND OF THE INVENTION The present invention relates to the field of data storage devices. Comp ...
- how to generate an analog output from a in-built pwm of Atmega 32AVR microcontrloller?
how to generate an analog output from a in-built pwm of Atmega 32AVR microcontrloller? you need a re ...
- How to modify analog output range of Arduino Due
Voltage Translation for Analog to Digital Interface ADC How to modify analog output range of Arduino ...
随机推荐
- 浅析Linux下进程间通信:共享内存
浅析Linux下进程间通信:共享内存 共享内存允许两个或多个进程共享一给定的存储区.因为数据不需要在客户进程和服务器进程之间复制,所以它是最快的一种IPC.使用共享内存要注意的是,多个进程之间对一给定 ...
- tp 中关于大小写的问题
ThinkPHP3.2.3升级的若干问题和注意事项(持续更新) 现把ThinkPHP3.2.2在升级到3.2.3的过程中需要注意和可能的问题整理如下: (无论如何,在升级之前请确认备份) 1.首先3. ...
- [python] 线程锁
参考:http://blog.csdn.net/kobeyan/article/details/44039831 1. 锁的概念 在python中,存在GIL,也就是全局解释器锁,能够保证同一时刻只有 ...
- 去除html标签 正则表达式
/// <summary> /// 去除html标签 /// </summary> public static string Clea ...
- Nginx + tornado + supervisor部署
参考链接:supervisor + Tornado + Nginx 使用详解, 用tornado ,Supervisord ,nginx架网站, tornado官方文档 项目文档树: . ├── ch ...
- 学习angular 指令构造器时遇到的小问题
在学习angular时,使用模块来为应用添加自己的指令时,遇到了一个问题,演示的代码如下: <!DOCTYPE html> <html> <head> <me ...
- Poj-2250-Compromise
题意是找两篇文章中的最长子单词序列 能得出个数,但不知如何输出,找不到路径 看了别人的dfs,有所领悟: 若输入s1:ab,bd,fk,ce,ak,bt,cv s2: ab,fk,ce,tt,ak,b ...
- 对象池与.net—从一个内存池实现说起
本来想写篇关于System.Collections.Immutable中提供的ImmutableList里一些实现细节来着,结果一时想不起来源码在哪里--为什么会变成这样呢--第一次有了想写分析的源码 ...
- APUE1
[APUE]进程控制(上) 一.进程标识 进程ID 0是调度进程,常常被称为交换进程(swapper).该进程并不执行任何磁盘上的程序--它是内核的一部分,因此也被称为系统进程.进程ID 1是in ...
- 做梦想起来的C#简单实现贪吃蛇程序(LinQ + Entity)
最近一直在忙着单位核心开发组件的版本更新,前天加了一个通宵,昨天晚上却睡不着,脑子里面突然不知怎的一直在想贪吃蛇的实现方法.以往也有类似的情况,白天一直想不通的问题,晚上做梦有时会想到更好的版本,于是 ...