一、幻方按照阶数可分成了三类,奇数阶幻方双偶阶幻方单偶阶幻方

二、奇数阶幻方(劳伯法)

奇数阶幻方最经典的填法是罗伯法。填写的方法是:

把1(或最小的数)放在第一行正中;按以下规律排列剩下的(n×n-1)个数:
(1)每一个数放在前一个数的右上一格;

(2)如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;

(3)如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;

(4)如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在底行且最左列;

(5)如果这个数所要放的格已经有数填入,那么就把它放在前一个数的下一行同一列的格内。

例,用该填法获得的5阶幻方:

17

24

1

8

15

23

5

7

14

16

4

6

13

20

22

10

12

19

21

3

11

18

25

2

9

二、双偶数阶幻方(海尔法)

所谓双偶阶幻方就是当n可以被4整除时的偶阶幻方,即4K阶幻方。在说解法之前我们先说明一个“互补数”定义:就是在n阶幻方中,如果两个数的和等于幻方中最大的数与1的和(即n×n+1),我们称它们为一对互补数。如在三阶幻方中,每一对和为10的数,是一对互补数 ;在四阶幻方中,每一对和为17的数,是一对互补数。

双偶数阶幻方最经典的填法是海尔法。填写的方法是:

以8阶幻方为例:
(1)先把数字按顺序填。然后,按4×4把它分割成4块(如图)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

(2)每个小方阵对角线上的数字(如左上角小方阵部分),换成和它互补的数。

64

2

3

61

60

6

7

57

9

55

54

12

13

51

50

16

17

47

46

20

21

43

42

24

40

26

27

37

36

30

31

33

32

34

35

29

28

38

39

25

41

23

22

44

45

19

18

48

49

15

14

52

53

11

10

56

8

58

59

5

4

62

63

1

三、单偶数阶幻方(斯特拉兹法)

所谓单偶阶幻方就是当n不可以被4整除时的偶阶幻方,即4K+2阶幻方。如(n=6,10,14……)的幻方。

单偶数阶幻方最经典的填法是斯特拉兹法。填写的方法是:

以10阶幻方为例。这时,k=2。
(1)把魔方阵分为A,B,C,D四个象限,这样每一个象限肯定是奇数阶。用罗伯法,依次在A象限,D象限,B象限,C象限按奇数阶幻方的填法填数。

(2)在A象限的中间行、中间格开始,按自左向右的方向,标出k格。A象限的其它行则标出最左边的k格。将这些格,和C象限相对位置上的数互换位置。

(3)在B象限所有行的中间格,自右向左,标出k-1格。(注:6阶幻方由于k-1=0,所以不用再作B、D象限的数据交换),将这些格,和D象限相对位置上的数互换位置。

以上内容来源:http://www.cnblogs.com/panlijiao/archive/2012/05/11/2496757.html

实现代码如下:

 #include <stdio.h>
#include <string.h>
#include <stdlib.h> #define COL 20
#define ROW 20 void deal_argv(int argc, char **argv, int *degree) {
if (argc != ) {
printf("cmd: ./a.out degree\n");
exit(-);
} else {
*degree = atoi(argv[]);
if (*degree <= || *degree > ) {
printf("the degree is between 3 and 20\n");
exit(-);
}
}
} void show_array(int (*array)[ROW], int degree) {
int row, col;
for (row = ; row < degree; row++){
for (col = ; col < degree; col++)
printf("%5d", array[row][col]);
printf("\n");
}
} void init_array(int (*array)[ROW], int size) {
memset(array, , size);
} void odd_num_magic_square(int degree, int (*array)[ROW], int x, int y, int num) {
int element = ;
int col = ;
int row = degree / ; for (element = num; element <= degree * degree + num - ; element++) {
array[col + x][row + y] = element;
if (array[(col - + degree) % degree + x][(row + ) % degree + y] != ) {
col = (col + + degree) % degree;
} else {
row = (row + ) % degree;
col = (col - + degree) % degree;
}
}
} void fill_array(int (*array)[ROW], int degree) {
int row, col;
int num = ; for (col = ; col < degree; col++)
for (row = ; row < degree; row++)
array[col][row] = num++;
} void double_magic_square(int degree, int (*array)[ROW]) {
int complement = ;
int deg = degree / ;
int row, col; fill_array(array, degree);
complement = degree * degree + ; for (col = ; col < deg; col++) {
for (row = ; row < deg; row++) {
array[col * ][row * ] = complement - array[col * ][row * ];
array[col * + ][row * + ] = complement - array[col * + ][row * + ];
array[col * + ][row * + ] = complement - array[col * + ][row * + ];
array[col * + ][row * + ] = complement - array[col * + ][row * + ]; array[col * + ][row * ] = complement - array[col * + ][row * ];
array[col * + ][row * + ] = complement - array[col * + ][row * + ];
array[col * + ][row * + ] = complement - array[col * + ][row * + ];
array[col * ][row * + ] = complement - array[col * ][row * + ];
}
}
} void change_value(int *value_a, int *value_b) {
int tmp;
tmp = *value_a;
*value_a = *value_b;
*value_b = tmp;
} void single_magic_square(int degree, int (*array)[ROW]) {
int deg = degree / ;
int k = ;
int row, col;
int tmp_row = ; odd_num_magic_square(deg, array, , , );
odd_num_magic_square(deg, array, deg, deg, deg * deg + );
odd_num_magic_square(deg, array, , deg, deg * deg * + );
odd_num_magic_square(deg, array, deg, , deg * deg * + ); k = (degree - ) / ;
for (row = ; row < k; row++) {
for (col = ; col < deg; col++) {
if (col == deg / ) {
change_value(&array[col][deg / + row], &array[col + deg][deg / + row]);
} else {
change_value(&array[col][row], &array[col + deg][row]);
}
}
} for (row = ; row < k - ; row++) {
for (col = ; col < deg; col++) {
tmp_row = row + deg + deg / + - k + ;
change_value(&array[col][tmp_row], &array[col + deg][tmp_row]);
}
} } int main(int argc, char *argv[]) {
int array[COL][ROW];
int degree = ; deal_argv(argc, argv, &degree); init_array(array, sizeof(array));
if ((degree % ) != ) {
odd_num_magic_square(degree, array, , , );
show_array(array, degree);
} else if (degree % == ) {
double_magic_square(degree, array);
show_array(array, degree);
} else {
single_magic_square(degree, array);
show_array(array, degree);
} return ;
}

【C】——幻方算法的更多相关文章

  1. 任意N阶幻方算法实现

    算法原理请参考:https://www.zhihu.com/question/23531676 先定义一些通用的函数,比如创建空幻方,删除幻方,打印幻方. 创建幻方 int **NewMagicS(i ...

  2. 任意阶魔方阵(幻方)的算法及C语言实现

    写于2012.10: 本来这是谭浩强那本<C程序设计(第四版)>的一道课后习题,刚开始做得时候去网上找最优的算法,结果发现奇数和双偶数(4的倍数)的情况下算法都比较简单,但是单偶数(2的倍 ...

  3. 任意阶幻方(魔方矩阵)C语言实现

    魔方又称幻方.纵横图.九宫图,最早记录于我国古代的洛书.据说夏禹治水时,河南洛阳附近的大河里浮出了一只乌龟,背上有一个很奇怪的图形,古人认为是一种祥瑞,预示着洪水将被夏禹王彻底制服.后人称之为&quo ...

  4. acm算法模板(1)

    1. 几何 4 1.1 注意 4 1.2 几何公式 4 1.3 多边形 6 1.4 多边形切割 9 1.5 浮点函数 10 1.6 面积 15 1.7 球面 16 1.8 三角形 17 1.9 三维几 ...

  5. Java 实现奇数阶幻方的构造

    一.设计的流程图如下所示 二.Java 语言的代码实现 package MagicSquare; //奇数幻方的实现 public class Magic_Odd { //n 为幻方的阶数 publi ...

  6. 魔方阵算法及C语言实现

    1 魔方阵概念 填充的,每一行.每一列.对角线之和均相等的方阵,阶数n = 3,4,5….魔方阵也称为幻方阵. 例如三阶魔方阵为: 魔方阵有什么的规律呢? 魔方阵分为奇幻方和偶幻方.而偶幻方又分为是4 ...

  7. 【算法】C语言趣味程序设计编程百例精解

    C语言趣味程序设计编程百例精解 C/C++语言经典.实用.趣味程序设计编程百例精解(1)  https://wenku.baidu.com/view/b9f683c08bd63186bcebbc3c. ...

  8. ACM主要算法

    ACM主要算法ACM主要算法介绍 初期篇 一.基本算法(1)枚举(poj1753, poj2965)(2)贪心(poj1328, poj2109, poj2586)(3)递归和分治法(4)递推(5)构 ...

  9. ACM常用算法

    数据结构 栈,队列,链表 哈希表,哈希数组 堆,优先队列 双端队列 可并堆 左偏堆 二叉查找树 Treap 伸展树 并查集 集合计数问题 二分图的识别 平衡二叉树 二叉排序树 线段树 一维线段树 二维 ...

随机推荐

  1. Eclipse格式化代码快捷键失效问题

    一般情况下,Eclipse快捷键失效是因为与其它软件快捷键冲突,Eclipse格式化代码快捷键正好与搜狗输入法的“简繁切换”的快捷键冲突,将搜狗输入法的快捷键修改一下就行了.

  2. java基础知识分析: final , finally,finalize

    final final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承.因此一个类不能既被声明为 abstract的,又被声明为final的.将变量或方 ...

  3. MVC4+WebApi+Redis Session共享练习(上)

    这几天生病了,也没有心情写博客,北京医院真心伤不起呀,钱不少花,病没治好,还增加了新病,哎不说了,周末还得去大医院检查一下,趁女盆友还没有回来,把前几天写的东西总结一下.本文也会接触一点webApi的 ...

  4. [C++] socket -8 [命名管道]

    ::命名管道不但能实现同一台机器上两个进程通信,还能在网络中不同机器上的两个进程之间的通信机制.与邮槽不同,命名管道是采用基于连接并且可靠的传输方式,所以命名管道传输数据只能一对一进行传输. /* 命 ...

  5. jenkins2 pipeline 语法快速参考

    jenkins2 pipeline中常用的语法快速参考. 文章来自:http://www.ciandcd.com文中的代码来自可以从github下载: https://github.com/ciand ...

  6. [jQuery学习系列一]1-选择器与DOM对象

    前言: 好久没有更新博客了, 最近想复习下 之前学过的JS的相关内容, 也算是自己的一种总结. 知识长时间不用就会忘记, 多学多记多用!! 下面的程序都可以在下面的网站进行在线调试: http://w ...

  7. paip.java 注解的详细使用代码

    paip.java 注解的详细使用代码 作者Attilax 艾龙,  EMAIL:1466519819@qq.com 来源:attilax的专栏 地址:http://blog.csdn.net/att ...

  8. Javascript入门学习

    编程之道,程序员不仅仅要精通一门语言,而是要多学习几门. 本学习之源出自柠檬学院http://www.bjlemon.com/,特此声明. 第一课1:javascript的主要特点解释型:不需要编译, ...

  9. Symbols of String Pattern Matching

    Symbols of String Pattern Matching in Introduction to Algorithms. As it's important to be clear when ...

  10. NGUI ScrollView 循环 Item 实现性能优化

    今天来说说一直都让我在项目中头疼的其中一个问题,NGUI 的scrollView 列表性能问题,实现循环使用item减少性能上的开销. 希望能够给其他同学们使用和提供一个我个人的思路,这个写的不是太完 ...