转自:http://blog.sina.com.cn/s/blog_641289eb0101e2ld.html

Part 2总结一下一个粗略的建模过程:

  1. 首先,弄清楚问题是什么,能不能用机器学习的思路去考虑:
    1. 是否有pattern?
    2. 是否规则不明确?
    3. 是否有数据?
  2. 如果可以用,那么考虑,问题的学习目标是什么,有多少feature,有多少数据,应该用什么error measure(Learning from data 有一节专门讲这个,客户能提供吗?如果不能,我们找一个能说服自己的,或者找一个容易做的。具体参考课件)
    1. 数据和feature之间的关系,practical来说是N大于等于10倍的自由度。
    2. 这个error measure或者说performance measure是否有个baseline我们可以比较呢?
  3. 选定算法,从简单的到复杂的都要考虑:
    1. 一般来说,如果有足够多的数据,简答的算法不一定比复杂的差。
    2. 要考虑用户的需求,是否需要最后的模型能够被人理解,还是说一个黑盒子就可以了。
  4. 分割数据为Training和Testing (这一点一定要在做任何数据处理前完成!处理,只应该在train上做,确定方案后在运用到test上去)
  5. 对train数据进行清理,分析什么的(重要Update: 这里的数据清理和分析必须是和数据中的class variable没有任何联系!如果有任何联系,都请放到Single Validation或者Cross validation里面去做!一个经常出现的错误就是在这一步进行特征选择,然后在选择完成后的数据集上进行Cross Validation,这样做通常会得到over-optimistic的结果。具体文献可以参考Statistical Learning里面的Cross Validation那一个小节)。
  6. 在Training上进行建模学习:
    1. 我们有很多Model可以选择,而一个Model下面又可以有很多参数可以调试,或者feature可以选择。这就需要我们通过Single Validation或者Cross Validation来看看这些Model在不同的参数下表现如何。
    2. 这样,我们从一个Model中选出其中Eval最好的那个组合,作为该模型的代表h。
    3. 对于另一个模型,重复第二步,直到全部模型都考虑了。
    4. 对比所有的这些代表,找出其中Ecv最好的那个h对应的Model M。
    5. 用所有的训练数据(Model Selection by Best Eval--Learning from Data),用M和它的最优参数训练一得到一个g*,最为最终的选择,同时我们做一下实验得到g*的training error--Etraiin。
  7. 在Testing上用g*进行测试。完成以后和baseline进行比较。如果好过baseline,那OK。继续试试更多算法看能不能提高。如果低于Baseline,那要进行以下考虑:
    1. 如果Etesting >> Etrain, 那么我们遇到了overfitting,那么我们可能需要:
      1. 更多的训练数据
      2. 或者更小的feature set
    2. 反之,如果Etesting于Etrain差别不大,那么我们遇到了underfitting,那么我们可能需要更多的feature(获取更多,或者在现有的基础上创建新的,比如polynomial features)
  8. 调整后,重新建模,直到满足条件为止。
上面提到的Validation可以是Single Validation,也可以是Cross Validation.如果计算量允许,就用cross validation(通常是5或者10 fold)。
===============================================================================================
这里插一些Andrew Ng在斯坦福的机器学习里提到的东西:
上面的建模部分,如果一开始就用较多较复杂的算法来做,可能会耗时间比较多。建议选用一个简单的算法,先用上面的步骤试试,看看结果怎样?是有overfitting还是underfitting,这需要判断Etesting和Etrain之间的gap是不是很大。不过,多大算大呢...
 
一个方法是画一下Learning Curve,即Eval, Etrain vs Training size的曲线,具体内容可以去看课程的课件,大概就是说如果是overfitting,随着Training size的增加,Eval和Etrain之间的gap会逐渐的减小,而如果是underfitting,就不会。
 
构建learning curve的方法是,随机的从training set中抽取i个数据的subset,在上面进行建模,然后将模型用在这个subset和整个validation set上进行验证得到Etrain和Eval,这个过程重复20到50次,最后的平均作为i个数据的代表。之后测试i+1,i+2.....
 
不过,这貌似只适用于single validation,cross validation的情况下要怎么做还不清楚。不过,也许也没必要在这个问题上考虑cross validation,毕竟这只是一个dirty approach,看看大概是怎么个情况。
 
===================================================================
另一个问题,如果是需要对数据集(已经是分割过的数据集train-test split中的train)做Sampling来处理imbalanced data的情况下做cross validation,那么应该做如下的处理(假设是5 fold):
1、选出一个fold做validation set,剩下的四个set做training
2、对training做sampling的处理,训练并得到一个hypothesis
3、在validation上测试效果。
4、换一组,重复以上步骤。最后求平均。
这个东西貌似很容易就做成了错误的方法:拿着整个train数据集做了Sampling,再去做cross validation。不对哦!!!简而言之,如果是要对数据分布做变化的操作,都要小心这个问题。
 
以上。

台大《机器学习基石》课程感受和总结---Part 2 (转)的更多相关文章

  1. Coursera台大机器学习基础课程学习笔记1 -- 机器学习定义及PLA算法

    最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program ...

  2. Coursera台大机器学习基础课程学习笔记2 -- 机器学习的分类

    总体思路: 各种类型的机器学习分类 按照输出空间类型分Y 按照数据标记类型分yn 按照不同目标函数类型分f 按照不同的输入空间类型分X 按照输出空间类型Y,可以分为二元分类,多元分类,回归分析以及结构 ...

  3. Coursera台大机器学习基础课程1

    Coursera台大机器学习基础课程学习笔记 -- 1 最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一 机器学习是什么? 感觉和 Tom M. Mitche ...

  4. Coursera台大机器学习技法课程笔记01-linear hard SVM

    极其淡腾的一学期终于过去了,暑假打算学下台大的这门机器学习技法. 第一课是对SVM的介绍,虽然之前也学过,但听了一次感觉还是很有收获的.这位博主总结了个大概,具体细节还是 要听课:http://www ...

  5. Coursera台大机器学习技法课程笔记14-Radial Basis Function Network

    将Radial Basis Function与Network相结合.实际上衡量两个点的相似性:距离越近,值越大. 将神经元换为与距离有关的函数,就是RBF Network: 可以用kernel和RBF ...

  6. Coursera台大机器学习技法课程笔记03-Kernel Support Vector Machine

    这一节讲的是核化的SVM,Andrew Ng的那篇讲义也讲过,讲的也不错. 首先讲的是kernel trick,为了简化将低维特征映射高维特征后的计算,使用了核技巧.讲义中还讲了核函数的判定,即什么样 ...

  7. Coursera台大机器学习技法课程笔记11-Gradient Boosted Decision Tree

    将Adaboost和decision tree相结合,需要注意的地主是,训练时adaboost需要改变资料的权重,如何将有权重的资 料和decision tree相结合呢?方法很类似于前面讲过的bag ...

  8. Coursera台大机器学习技法课程笔记10-Random forest

    随机森林就是要将这我们之前学的两个算法进行结合:bagging能减少variance(通过g们投票),而decision tree的variance很大,资料不同,生成的树也不同. 为了得到不同的g, ...

  9. Coursera台大机器学习技法课程笔记04-Soft-Margin Support Vector Machine

    之前的SVM非常的hard,要求每个点都要被正确的划分,这就有可能overfit,为此引入了Soft SVM,即允许存在被错分的点,将犯的错放在目 标函数中进行优化,非常类似于正则化. 将Soft S ...

  10. Coursera台大机器学习技法课程笔记02-Dual Support Vector Machine

    这节课讲的是SVM的对偶问题,比较精彩的部分:为何要使用拉格朗日乘子以及如何进行对偶变换. 参考:http://www.cnblogs.com/bourneli/p/4199990.html http ...

随机推荐

  1. Use Windows Azure AD to create SSO projects

    Keywords Windows Azure AD, SSO Summary Use Windows Azure AD to create SSO projects Detailed Scenario ...

  2. js的设计模式

    <Practical Common Lisp>的作者 Peter Seibel 曾说,如果你需要一种模式,那一定是哪里出了问题.他所说的问题是指因为语言的天生缺陷,不得不去寻求和总结一种通 ...

  3. 获取Web.config配置节

    static string GetAppSetting(string key) { var appSetting = ConfigurationManager.AppSettings[key]; if ...

  4. ArrayAdapter与SimpleAdapter的使用

    在使用ListView中我们使用到adapter,android中为我们不仅提供了BaseAdapter类来让我们自定义自己的Adapter,还为我们提供了ArrayAdapter以及SimpleAd ...

  5. Servlet获取简单验证码

    package com.helloweenvsfei.servlet; import java.awt.Color; import java.awt.Font; import java.awt.Gra ...

  6. reboot-css

    dd, label { margin-bottom: .5rem; }abbr[title] { text-decoration: none; }abbr[title] { border-bottom ...

  7. JS模式:又一个简单的工厂模式

    <!DOCTYPE html> <html> <head> <title></title> </head> <body&g ...

  8. mysql-分页查询方案

    一.直接使用limit最简单查询方法: , 在中小数据量的情况下,这样的SQL足够用了,唯一需要注意的问题就是确保使用了索引. 随着数据量的增加,页数会越来越多,查看后几页的SQL就可能类似: , 言 ...

  9. Tomcat server.xml详解

    Server.xml的结构大致 <Server port="8005" shutdown="SHUTDOWN"> <Service name= ...

  10. BZOJ-1477 青蛙的约会 拓展欧几里德

    充权限之前做的...才来交 1477: 青蛙的约会 Time Limit: 2 Sec Memory Limit: 64 MB Submit: 369 Solved: 233 [Submit][Sta ...