hdu 5428 质因子
问题描述
有一个数列,FancyCoder沉迷于研究这个数列的乘积相关问题,但是它们的乘积往往非常大。幸运的是,FancyCoder只需要找到这个巨大乘积的最小的满足如下规则的因子:这个因子包含大于两个因子(包括它本身;比如,4有3个因子,因此它是满足这个要求的一个数)。你需要找到这个数字并输出它。但是我们知道,对于某些数可能没有这样的因子;在这样的情况下,请输出-1.
这个因子包含大于两个因子
也就是说必须包含三个因子可以为本身
求出所有数的所有质因子中最小的两个,相乘就是答案。
如果所有数字的质因子个数不到两个,那么就是无解
输入样例
2
3
1 2 3
5
6 6 6 6 6
输出样例
6
4
# include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <string>
# include <cmath>
# include <queue>
# define LL long long
using namespace std ; LL a[] ;
LL vis[] ; int main ()
{
//freopen("in.txt","r",stdin) ;
int T ;
cin>>T ;
while(T--)
{
int n , i ;
int cnt = ;
cin>>n ;
for (i = ; i < n ; i++)
cin>>a[i] ;
memset(vis , , sizeof(vis)) ;
for (i = ; i < n ; i++)
{
LL x = a[i] ;
for (LL j = ; j*j <= x ; j++)
{
while(x%j==)
{
vis[cnt++] = j ;
x /= j ;
}
}
if (x > )
vis[cnt++] = x ;
}
sort(vis , vis+cnt) ;
if (cnt < )
cout<<-<<endl ;
else
cout<<vis[]*vis[]<<endl ; } return ;
}
hdu 5428 质因子的更多相关文章
- HDU 4497 GCD and LCM(分解质因子+排列组合)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...
- HDU 4320 Arcane Numbers 1(质因子包含)
http://acm.hdu.edu.cn/showproblem.php?pid=4320 题意: 给出A,B,判断在A进制下的有限小数能否转换成B进制下的有限小数. 思路: 这位博主讲得挺不错的h ...
- HDU 4135 Co-prime (容斥+分解质因子)
<题目链接> 题目大意: 给定区间[A,B](1 <= A <= B <= 10 15)和N(1 <=N <= 10 9),求出该区间中与N互质的数的个数. ...
- hdu5317 RGCDQ (质因子种数+预处理)
RGCDQ 题意:F(x)表示x的质因子的种数.给区间[L,R],求max(GCD(F(i),F(j)) (L≤i<j≤R).(2<=L < R<=1000000) 题解:可以 ...
- Openjudge 1.13-21:最大质因子序列(每日两水)
总时间限制: 1000ms 内存限制: 65536kB 描述 任意输入两个正整数m, n (1 < m < n <= 5000),依次输出m到n之间每个数的最大质因子(包括m和n ...
- 快速求n的质因子(数论)
快速求n的质因子 如何尽快地求出n的质因子呢?我们这里又涉及两个好的算法了! 第一个:用于每次只能求出一个数的质因子,适用于题目中给的n的个数不是很多,但是n又特别大的 #include<std ...
- HDU 5428 The Factor
话说这题意真的是好难懂啊,尽管搜到了中文题意,然而还是没懂,最后看到了一个题解才懂的.http://www.cnblogs.com/Apro/p/4784808.html#3470972 题意:给出n ...
- UVA 10780 Again Prime? No Time. 分解质因子
The problem statement is very easy. Given a number n you have to determine the largest power of m,no ...
- hdu 5428 The Factor(数学)
Problem Description There is a sequence of n positive integers. Fancycoder is addicted to learn thei ...
随机推荐
- Eclipse Job
Job可以我们基于Eclipse的Java程序中,我们有很多种方式提供多任务的实现.熟悉Java的朋友立即会想到Java的Thread类,这是Java中使 用最多的一个实现多任务的类.Eclipse平 ...
- P3254 圆桌问题
题目链接 非常简单的一道网络流题 我们发现每个单位的人要坐到不同餐桌上,那也就是说每张餐桌上不能有同一单位的人.这样的话,我们对于每个单位向每张餐桌连一条边权为1的边,表示同一餐桌不得有相同单位的人. ...
- 【刷题】LOJ 6006 「网络流 24 题」试题库
题目描述 假设一个试题库中有 \(n\) 道试题.每道试题都标明了所属类别.同一道题可能有多个类别属性.现要从题库中抽取 \(m\) 道题组成试卷.并要求试卷包含指定类型的试题.试设计一个满足要求的组 ...
- HGOI20181029模拟题解
HGOI20181029模拟题解 /* sxn让我一定要谴责一下出题人和他的数据! */ problem: 给出十进制数a,b,然后令(R)10=(a)10*(b)10,给出c表示一个k进制数(1&l ...
- 前端学习 -- Css -- 否定伪类
语法::not(.选择器) 作用:可以从已选中的元素中剔除出某些元素. <!DOCTYPE html> <html> <head> <meta charset ...
- 解题:NOI 2010 超级钢琴
题面 WC时候写的题,补一下 做法比较巧妙:记录每个位置和它当前对应区间的左右端点,做前缀和之后重载一下小于号,用优先队列+ST表维护当前最大值.这样贡献就是区间最大值和端点左边差分一下,可以O(1) ...
- RPC与RMI的区别
分布式项目按照以下发展经历了以下技术: CORBA: RMI:基于远程接口的调用 RMI-RROP:这是RMI与CORBA的结合,用在了EJB技术上,EJB留给世界上是优秀的理论和糟糕的架构. WEB ...
- (一)Git时间--初识版本控制工具
//配置一下你的身份 git config --global use.name "Douzi" git config --global use.email "jdouzi ...
- [转载]微软VS2015支持Android和iOS编程
Visual Studio 2015 Preview http://www.zhihu.com/question/26594936/answer/33397319 http://www.visuals ...
- VMware Linux 下 Nginx 安装配置 - nginx.conf 配置 [负载两个 Tomcat] (三)
首先启动Nginx 1. 相关浏览 两个 Tomcat 配置: VMware Linux 下 Nginx 安装配置 - Tomcat 配置 (二) Nginx 安装配置启动: VMware Linu ...