bzoj 2440 完全平方数 【莫比乌斯函数】
题意:第Ki 个不是完全平方数的正整数倍的数。
对于一个数t,t以内的数里的非完全平方数倍数的个数:num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数(36,100,225...)的数量−三个质数balabala……
所以 (然而这一坨是怎么推出来的呢?)
u(i)就是莫比乌斯函数
求莫比乌斯函数代码:
//递推
ll mu[100005];
void mobius(ll mn)
{
mu[1]=1;
for(ll i=1;i<=mn;i++){
for(ll j=i+i;j<=mn;j+=i){
mu[j]-=mu[i];
}
}
}
//main
mobius(100000);
//线性筛法求莫比乌斯函数
bool check[MAXN+10];
int prime[MAXN+10];
int mu[MAXN+10];
void Moblus()
{
memset(check,false,sizeof(check));
mu[1] = 1;
int tot = 0;
for(int i = 2; i <= MAXN; i++)
{
if( !check[i] ){
prime[tot++] = i;
mu[i] = -1;
}
for(int j = 0; j < tot; j++)
{
if(i * prime[j] > MAXN) break;
check[i * prime[j]] = true;
if( i % prime[j] == 0){
mu[i * prime[j]] = 0;
break;
}else{
mu[i * prime[j]] = -mu[i];
}
}
}
}
所以代码:
#include <cstdio>
#include <cmath>
typedef long long ll;
const ll M=100001;
ll t,n,miu[M],pri[M],bo[M],ans;
void makemiu(){
miu[1]=1;
for (ll i=2;i<M;i++){
if (!bo[i]){
pri[++pri[0]]=i;
miu[i]=-1;
}
for (ll j=1;j<=pri[0] && pri[j]*i<M;j++){
bo[i*pri[j]]=1;
if (i%pri[j]==0){
miu[i*pri[j]]=0;
break;
}else miu[i*pri[j]]=-miu[i];
}
}
}
ll check(ll t){
ll sq=(int)sqrt(t),res=0;
for (ll i=1;i<=sq;i++)
res=res+miu[i]*(t/(i*i));
return res;
}
ll getans(ll t){
ll l=0,r=t*2,mid;
while (l+1<r){
mid=(l+r)/2;
if (check(mid)<t) l=mid;
else r=mid;
}
return r;
}
int main(){
scanf("%I64d",&t);
makemiu();
for (ll i=1;i<=t;i++){
scanf("%I64d",&n);
printf("%I64d\n",getans(n));
}
}
bzoj 2440 完全平方数 【莫比乌斯函数】的更多相关文章
- bzoj 2440 (莫比乌斯函数)
bzoj 2440 完全平方数 题意:找出第k个不是完全平方数的正整数倍的数. 例如 4 9 16 25 36什么的 通过容斥原理,我们减去所有完全数 4有n/4个,但是36这种会被重复减去, ...
- BZOJ 2440 完全平方数(莫比乌斯反演,容斥原理)
http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第K个没有平方因子的数 思路:首先,可以二分数字,然后问题就转变成x以内有多少无平方因 ...
- BZOJ 2440 完全平方数 莫比乌斯反演模板题
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2440 题目大意: 求第k个无平方因子的数 思路: 二分答案x,求1-x中有多少个平方因 ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- 数学(莫比乌斯函数):BZOJ 2440 完全平方数
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他数的热爱. 这 ...
- BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...
- BZOJ 2440 完全平方数(莫比乌斯-容斥原理)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2440 题意:给定K.求不是完全平方数(这里1不算完全平方数)的倍数的数字组成的数字集合S ...
- BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...
随机推荐
- js 标准对象
在JavaScript的世界里,一切都是对象. 但是某些对象还是和其他对象不太一样.为了区分对象的类型,我们用typeof操作符获取对象的类型,它总是返回一个字符串: typeof 123; // ' ...
- PAT 1076 Wifi密码(15)(代码)
1076 Wifi密码(15 分) 下面是微博上流传的一张照片:"各位亲爱的同学们,鉴于大家有时需要使用 wifi,又怕耽误亲们的学习,现将 wifi 密码设置为下列数学题答案:A-1:B- ...
- poj 2777(线段树+lazy思想) 小小粉刷匠
http://poj.org/problem?id=2777 题目大意 涂颜色,输入长度,颜色总数,涂颜色次数,初始颜色都为1,然后当输入为C的时候将x到y涂为颜色z,输入为Q的时候输出x到y的颜色总 ...
- 11. pt-heartbeat
pt-heartbeat [OPTIONS] [DSN] --update|--monitor|--check|--stop ------------------------------------- ...
- 糟糕的@@identity,SCOPE_IDENTITY ,IDENT_CURRENT
在某数据库里面,某甲用@@identity来获取最近插入的id值,当在多人环境,发生获取到null值的问题. 那么@@identity是否有存在的必要? 感觉像生个孩子,多了个指头. 有的数据库的ge ...
- Linux中处理字符串
获取字符串长度: ${#字符串变量名} 截取子串: 1. expr substr 字符串 起始位置 截取长度 2. 命令输出 | cut -c 起始位置-结束位置 命令输出 | cut -c &quo ...
- Bootstrap学习遇到的role属性--- 无障碍网页应用属性
以前接触过Bootstrap,但也只是仅仅接触,现在重新学习下,今天看到一个例子中的属性有一个role, 查阅资料发现这个是--WAI-ARIA无障碍设计属性: 通俗说是该设计为了一些盲人,失聪,残疾 ...
- Python导入自定义类时显示错误:attempted relative import beyond top-level package
显示这个错误可能有两个原因: 1.文件夹中没有包含__init__.py文件,该文件可以为空,但必须存在该文件. 2.把该文件当成主函数入口,该文件所在文件夹不能被解释器视作package,所以可能导 ...
- 使用yarn 安装 Vue-DevTools
1. 从 github 下载 vuejs/vue-devtools https://github.com/vuejs/vue-devtools/archive/dev.zip 2.安装yarn 及 编 ...
- KiB和KB的区别
原文链接:http://blog.csdn.net/starshine/article/details/8226320 原来没太注意MB与MiB的区别,甚至没太关注还有MiB这等单位,今天认真了一下, ...