bzoj 2440 完全平方数 【莫比乌斯函数】
题意:第Ki 个不是完全平方数的正整数倍的数。
对于一个数t,t以内的数里的非完全平方数倍数的个数:num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数(36,100,225...)的数量−三个质数balabala……
所以 (然而这一坨是怎么推出来的呢?)
u(i)就是莫比乌斯函数
求莫比乌斯函数代码:
//递推
ll mu[100005];
void mobius(ll mn)
{
mu[1]=1;
for(ll i=1;i<=mn;i++){
for(ll j=i+i;j<=mn;j+=i){
mu[j]-=mu[i];
}
}
}
//main
mobius(100000);
//线性筛法求莫比乌斯函数
bool check[MAXN+10];
int prime[MAXN+10];
int mu[MAXN+10];
void Moblus()
{
memset(check,false,sizeof(check));
mu[1] = 1;
int tot = 0;
for(int i = 2; i <= MAXN; i++)
{
if( !check[i] ){
prime[tot++] = i;
mu[i] = -1;
}
for(int j = 0; j < tot; j++)
{
if(i * prime[j] > MAXN) break;
check[i * prime[j]] = true;
if( i % prime[j] == 0){
mu[i * prime[j]] = 0;
break;
}else{
mu[i * prime[j]] = -mu[i];
}
}
}
}
所以代码:
#include <cstdio>
#include <cmath>
typedef long long ll;
const ll M=100001;
ll t,n,miu[M],pri[M],bo[M],ans;
void makemiu(){
miu[1]=1;
for (ll i=2;i<M;i++){
if (!bo[i]){
pri[++pri[0]]=i;
miu[i]=-1;
}
for (ll j=1;j<=pri[0] && pri[j]*i<M;j++){
bo[i*pri[j]]=1;
if (i%pri[j]==0){
miu[i*pri[j]]=0;
break;
}else miu[i*pri[j]]=-miu[i];
}
}
}
ll check(ll t){
ll sq=(int)sqrt(t),res=0;
for (ll i=1;i<=sq;i++)
res=res+miu[i]*(t/(i*i));
return res;
}
ll getans(ll t){
ll l=0,r=t*2,mid;
while (l+1<r){
mid=(l+r)/2;
if (check(mid)<t) l=mid;
else r=mid;
}
return r;
}
int main(){
scanf("%I64d",&t);
makemiu();
for (ll i=1;i<=t;i++){
scanf("%I64d",&n);
printf("%I64d\n",getans(n));
}
}
bzoj 2440 完全平方数 【莫比乌斯函数】的更多相关文章
- bzoj 2440 (莫比乌斯函数)
bzoj 2440 完全平方数 题意:找出第k个不是完全平方数的正整数倍的数. 例如 4 9 16 25 36什么的 通过容斥原理,我们减去所有完全数 4有n/4个,但是36这种会被重复减去, ...
- BZOJ 2440 完全平方数(莫比乌斯反演,容斥原理)
http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第K个没有平方因子的数 思路:首先,可以二分数字,然后问题就转变成x以内有多少无平方因 ...
- BZOJ 2440 完全平方数 莫比乌斯反演模板题
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2440 题目大意: 求第k个无平方因子的数 思路: 二分答案x,求1-x中有多少个平方因 ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- 数学(莫比乌斯函数):BZOJ 2440 完全平方数
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他数的热爱. 这 ...
- BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...
- BZOJ 2440 完全平方数(莫比乌斯-容斥原理)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2440 题意:给定K.求不是完全平方数(这里1不算完全平方数)的倍数的数字组成的数字集合S ...
- BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...
随机推荐
- Centos7 上安装 FastDFS
1.安装gcc(编译时需要) FastDFS是C语言开发,安装FastDFS需要先将官网下载的源码进行编译,编译依赖gcc环境,如果没有gcc环境,需要安装gcc yum install -y gcc ...
- Luogu 3620 数据备份 - Set
Solution 很显然, 最优情况肯定是相邻两个相连 . 然后模型就跟 Luogu1484 类似了. 把两个房子 看成一个坑 (参考 Luogu1484), 选取 $k$ 个不相邻的坑, 使得权值最 ...
- dirname(__FILE__)
- Homestead 修改 Homestead.yaml 文件后 vagrant up 报错的问题
一般情况是 TAB 和空格的问题. 虽然表面看来,缩进是一致的. 但是 TAB 没能替换为空格,从而导致问题. 解决: $ sudo vim /etc/vim/vimrc.local syntax o ...
- Python之路(第十五篇)sys模块、json模块、pickle模块、shelve模块
一.sys模块 1.sys.argv 命令行参数List,第一个元素是程序本身路径 2.sys.exit(n) 退出程序,正常退出时exit(0) 3.sys.version . sys.maxint ...
- 数据结构:链表 >> 链表按结点中第j个数据属性排序(冒泡排序法)
创建结点类,链表类,测试类 import java.lang.Object; //结点node=数据date+指针pointer public class Node { Object iprop; p ...
- Internet
0x01 URL的解析/反解析/连接 解析 urlparse()--分解URL # -*- coding: UTF-8 -*- from urlparse import urlparse url = ...
- spring bean 生命周期和 ? 作用域? spirng bean 相互依赖? jvm oom ? jvm 监控工具? ThreadLocal 原理
1. spring bean 生命周期 1. 实例化一个bean ,即new 2. 初始化bean 的属性 3. 如果实现接口 BeanNameAware ,调用 setBeanName 4. Bea ...
- jdom解析xml
这次把代码整理了一下,打包发上来了,程序中需要用到的jar包也一起打在里面了,有兴趣的朋友可以解压后直接导入的eclipse里运行! xml是一种广为使用的可扩展标记语言,java中解析xml的方式有 ...
- crud树型结构数据
小型数据,比如标签,部门之类的,可以组织数据,成层状结构,一并返回前端,节省请求次数:但是大型数据,比如省市区等等联动,如果一并返回组织好的数据,查询量大,页面多次刷新,恶意请求,放入缓存还可以,其实 ...