【刷题】BZOJ 2134 单选错位
Description

Input
n很大,为了避免读入耗时太多,
输入文件只有5个整数参数n, A, B, C, a1,
由上交的程序产生数列a。
下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读入):
// for pascal
readln(n,A,B,C,q[1]);
for i:=2 to n do q[i] := (int64(q[i-1]) * A + B) mod 100000001;
for i:=1 to n do q[i] := q[i] mod C + 1;
// for C/C++
scanf("%d%d%d%d%d",&n,&A,&B,&C,a+1);
for (int i=2;i<=n;i++) a[i] = ((long long)a[i-1] * A + B) % 100000001;
for (int i=1;i<=n;i++) a[i] = a[i] % C + 1;
选手可以通过以上的程序语句得到n和数列a(a的元素类型是32位整数),
n和a的含义见题目描述。
2≤n≤10000000, 0≤A,B,C,a1≤100000000
Output
输出一个实数,表示gx期望做对的题目个数,保留三位小数。
Sample Input
3 2 0 4 1
Sample Output
1.167
【样例说明】
a[] = {2,3,1}
正确答案 gx的答案 做对题目 出现概率
{1,1,1} {1,1,1} 3 1/6
{1,2,1} {1,1,2} 1 1/6
{1,3,1} {1,1,3} 1 1/6
{2,1,1} {1,2,1} 1 1/6
{2,2,1} {1,2,2} 1 1/6
{2,3,1} {1,2,3} 0 1/6
共有6种情况,每种情况出现的概率是1/6,gx期望做对(3+1+1+1+1+0)/6 = 7/6题。(相比之下,lc随机就能期望做对11/6题)
Solution
单独考虑每道题的贡献,第 \(i\) 题与第 \(i-1\) 题正确答案相同的期望为
\]
线性扫过去积累贡献就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int Mod=1e8+1;
int n,A,B,C,st,pre,now;
db ans;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);read(A);read(B);read(C);read(st);pre=st;
for(register int i=2;i<=n;++i)now=(1ll*pre*A+B)%Mod,ans+=1.0/(db)(max(pre%C,now%C)+1),pre=now;
ans+=1.0/(db)(max(st%C,now%C)+1);
printf("%.3f\n",ans);
return 0;
}
【刷题】BZOJ 2134 单选错位的更多相关文章
- BZOJ 2134: 单选错位( 期望 )
第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. ---------------------------------- ...
- bzoj 2134 单选错位(期望)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2134 [题意] ai与ai+1相等得1分,求期望. [思路] 每个题的期望都是独立的. ...
- BZOJ——2134: 单选错位
http://www.lydsy.com/JudgeOnline/problem.php?id=2134 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: ...
- BZOJ 2134 单选错位 ——期望DP
发现概率是∑1/两道题答案相同的概率, 稍加化简 #include <map> #include <ctime> #include <cmath> #include ...
- [ BZOJ 2134 ] 单选错位
\(\\\) \(Description\) 一共\(N\)道题目,第\(i\)道题有\(A_i\)个选项,现在有一个人做完了所有题目,但将每一道题的答案都写到了下一道题的位置\((\)第\( ...
- 【BZOJ】2134: 单选错位 期望DP
[题意]有n道题,第i道题有ai个选项.把第i道题的正确答案填到第i+1道题上(n填到1),问期望做对几道题.n<=10^7. [算法]期望DP [题解]正确答案的随机分布不受某道题填到后面是否 ...
- Bzoj 2134: [国家集训队2011]单选错位(期望)
2134: 单选错位 Time Limit: 10 Sec Memory Limit: 259 MB Description Input n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A ...
- 【刷题】BZOJ 2407 探险
Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...
- 【刷题】BZOJ 4543 [POI2014]Hotel加强版
Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...
随机推荐
- C# 匿名类型var
格式: var 名字=new {字段赋值}:c#中只是作为推断,根据赋值推断出类型,隐式类型 var. 隐式类型的本地变量是强类型变量(就好像您已经声明该类型一样),但由编译器确定类型. 1)var类 ...
- springboot mybatis 后台框架平台 集成代码生成器 shiro 权限
1.代码生成器: [正反双向](单表.主表.明细表.树形表,快速开发利器)freemaker模版技术 ,0个代码不用写,生成完整的一个模块,带页面.建表sql脚本.处理类.service等完整模块2. ...
- 《图说VR入门》——入门汇总
本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/53818922 作者:car ...
- C++ 字符串, 数字 相互转化
1: strL.Format("%x", 12); //将数字12转换成,16进制字符(C),存于strL 2: strH.Format("%x",12); / ...
- 解决重启centos后resolv.conf总被清空的问题
解决重启centos后resolv.conf总被清空的问题 最近在机器上装了虚拟机virtualbox,然后安装了centos6.4,安装了免费主机控制面板virtualmin,在本地机器上搭建测试网 ...
- 微信小程序之路由
1. 路由方式 路由方式 触发时机 路由前页面 路由后页面 初始化 小程序打开的第一个页面 onLoad, onShow 打开新页面 调用 API wx.navigateTo 或使用组件 onHide ...
- 《杜增强讲Unity之Tanks坦克大战》9-发射子弹时蓄力
9 发射子弹时蓄力 实现效果如下 image 按下开火键(坦克1为空格键)重置力为最小力,一直按着的时候蓄力,抬起的时候发射.如果按着的时候蓄力到最大,则自动发射,此时在抬起则不会重复发射. 首先 ...
- CDH 5.16.1 离线部署 & 通过 CDH 部署 Hadoop 服务
参考 Cloudera Enterprise 5.16.x Installing Cloudera Manager, CDH, and Managed Services Installation Pa ...
- 机器学习中几种优化算法的比较(SGD、Momentum、RMSProp、Adam)
有关各种优化算法的详细算法流程和公式可以参考[这篇blog],讲解比较清晰,这里说一下自己对他们之间关系的理解. BGD 与 SGD 首先,最简单的 BGD 以整个训练集的梯度和作为更新方向,缺点是速 ...
- Async 异步转同步详细流程解释
安装 npm install async --save 地址 https://github.com/caolan/async Async的内容主要分为三部分 流程控制: 简化九种常见的流程的处理 ...