Description

Input

n很大,为了避免读入耗时太多,

输入文件只有5个整数参数n, A, B, C, a1,

由上交的程序产生数列a。

下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读入):

// for pascal

readln(n,A,B,C,q[1]);

for i:=2 to n do q[i] := (int64(q[i-1]) * A + B) mod 100000001;

for i:=1 to n do q[i] := q[i] mod C + 1;

// for C/C++

scanf("%d%d%d%d%d",&n,&A,&B,&C,a+1);

for (int i=2;i<=n;i++) a[i] = ((long long)a[i-1] * A + B) % 100000001;

for (int i=1;i<=n;i++) a[i] = a[i] % C + 1;

选手可以通过以上的程序语句得到n和数列a(a的元素类型是32位整数),

n和a的含义见题目描述。

2≤n≤10000000, 0≤A,B,C,a1≤100000000

Output

输出一个实数,表示gx期望做对的题目个数,保留三位小数。

Sample Input

3 2 0 4 1

Sample Output

1.167

【样例说明】

a[] = {2,3,1}

正确答案 gx的答案 做对题目 出现概率

{1,1,1} {1,1,1} 3 1/6

{1,2,1} {1,1,2} 1 1/6

{1,3,1} {1,1,3} 1 1/6

{2,1,1} {1,2,1} 1 1/6

{2,2,1} {1,2,2} 1 1/6

{2,3,1} {1,2,3} 0 1/6

共有6种情况,每种情况出现的概率是1/6,gx期望做对(3+1+1+1+1+0)/6 = 7/6题。(相比之下,lc随机就能期望做对11/6题)

Solution

单独考虑每道题的贡献,第 \(i\) 题与第 \(i-1\) 题正确答案相同的期望为

\[\frac{\min\{a_i,a_{i-1}\}}{a_i*a_{i-1}}=\frac{1}{\max \{a_i,a_{i-1}\}}
\]

线性扫过去积累贡献就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int Mod=1e8+1;
int n,A,B,C,st,pre,now;
db ans;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);read(A);read(B);read(C);read(st);pre=st;
for(register int i=2;i<=n;++i)now=(1ll*pre*A+B)%Mod,ans+=1.0/(db)(max(pre%C,now%C)+1),pre=now;
ans+=1.0/(db)(max(st%C,now%C)+1);
printf("%.3f\n",ans);
return 0;
}

【刷题】BZOJ 2134 单选错位的更多相关文章

  1. BZOJ 2134: 单选错位( 期望 )

    第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. ---------------------------------- ...

  2. bzoj 2134 单选错位(期望)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2134 [题意] ai与ai+1相等得1分,求期望. [思路] 每个题的期望都是独立的. ...

  3. BZOJ——2134: 单选错位

    http://www.lydsy.com/JudgeOnline/problem.php?id=2134 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: ...

  4. BZOJ 2134 单选错位 ——期望DP

    发现概率是∑1/两道题答案相同的概率, 稍加化简 #include <map> #include <ctime> #include <cmath> #include ...

  5. [ BZOJ 2134 ] 单选错位

    \(\\\) \(Description\) 一共\(N​\)道题目,第\(i​\)道题有\(A_i​\)个选项,现在有一个人做完了所有题目,但将每一道题的答案都写到了下一道题的位置\((​\)第\( ...

  6. 【BZOJ】2134: 单选错位 期望DP

    [题意]有n道题,第i道题有ai个选项.把第i道题的正确答案填到第i+1道题上(n填到1),问期望做对几道题.n<=10^7. [算法]期望DP [题解]正确答案的随机分布不受某道题填到后面是否 ...

  7. Bzoj 2134: [国家集训队2011]单选错位(期望)

    2134: 单选错位 Time Limit: 10 Sec Memory Limit: 259 MB Description Input n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A ...

  8. 【刷题】BZOJ 2407 探险

    Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...

  9. 【刷题】BZOJ 4543 [POI2014]Hotel加强版

    Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...

随机推荐

  1. lwip Packet buffers (PBUF) API 操作 集合

    struct pbuf *  pbuf_alloc (pbuf_layer layer, u16_t length, pbuf_type type)   struct pbuf *  pbuf_all ...

  2. LED驱动电源

    LED驱动电源       LED驱动电源,你了解多少? LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电).低压直 ...

  3. 实测—fft IP核使用(包括ifft的配置使用)

    Vivado xilinx fft9.0 使用笔记: ****注 仿真实测1024点的转换需要经过1148个时钟周期才能得到转换结果: 模块配置信号含义请参考pg109文档手册(写的贼烂会看晕),不详 ...

  4. MAC下配置ssh让SourceTree通过秘钥访问远程仓库

    问题描述 由于TortoiseGit没有MAC版本,我们使用了SourceTree来替代. 在帮同事解决Mac下的Git的时候,碰到一个问题:SourceTree无法使用ssh方式提交代码,这是由于没 ...

  5. 不成功的RMAN恢复到其他机器的例子

    事实上,RMAN备份的时候,如果是使用control file 来作catalog,那么一定要把control file和spfile恢复到另外的机器上面. 否则,会出现类似如下的错误: 原来的实例: ...

  6. CS50.5

    函数,全局变量,参数,返回值. 1,类型转换. 各种数据类型进行转换 2,API函数 应用程序编程接口. application programming interface 写写随笔吧,先说计算机.. ...

  7. Asp.Net_优化

    ASP.NET: 一.返回多个数据集 检查你的访问数据库的代码,看是否存在着要返回多次的请求.每次往返降低了你的应用程序的每秒能够响应请求的次数.通过在单个数据库请求中返回多个结果集,可以减少与数据库 ...

  8. docker之私有仓库镜像管理

    一.查看本地镜像 二.给镜像打标记(tag ) [root@node03 ~]# docker tag wordpress:v1 192.168.1.197:5000/wordpress:v1 2.删 ...

  9. linux下tomcat指定jdk和配置运行参数

    一.指定运行jdk 1)set classpath.sh和catalina.sh中写入: export JAVA_HOME=/usr/local/java/jdk1.8.0_121 export JR ...

  10. 记录:tf.saved_model 模块的简单使用(TensorFlow 模型存储与恢复)

    虽然说 TensorFlow 2.0 即将问世,但是有一些模块的内容却是不大变化的.其中就有 tf.saved_model 模块,主要用于模型的存储和恢复.为了防止学习记录文件丢失或者蠢笨的脑子直接遗 ...