[SCOI2014]方伯伯的商场之旅
Description
Input
HINT
1 < = L < = R < = 10^15, 2 < = K < = 20
Solution
说白了,这个题就是给了L~R的数,每个数的每个数位是一堆石子,把这堆石子合成一个位置,求总的最小代价。
法一:GZZ法
发现,对于一个数字P,假设钦定最终合并位置是p,
调整的时候,p向左移动一位,代价变化是p及右边所有的数位和-p左边所有数位和。
p向右移动一位,代价变化是p及左边所有数位和-p右边所有数位和。
设最优的位置的数字是x,位置是p,p左边数位和是a,右边是b
那么,一定有不等式:x+a-b>=0 ; x+b-a>=0 就是说,x不论往左往右移动,代价的变化总是增大的。
即:-x<=a-b<=x
所以,如果知道最终填的a-b,和x,p,就可以判断这个p位置填x是不是左边a,右边b的最优解了。
枚举p,x;
伪代码:(cnt是最高位,进制用m,填数用k)
for(p=1~cnt)
for(x=0~m-1)
for(i=cnt~1)
for(a-b=-200~+200)
设f[i][a-b][0/1]表示,填完第i位,a-b的值,有没有限制情况下,所有符合情况的数移动到p位置所花费的代价。
g[i][a-b][0/1]表示,f的方案数,即满足情况的数的个数,方便转移。
if(i==p){
continue;
}
for(k=0;k<m;k++){
if(i<p)
else
}
在i循环完之后,
for(a-b=-200~+200)
if(-x<=a-b<x) ret+=f[1][a-b][0/1]
注意这里是<=和<,因为可能一个数字有两个位置都是最优的合并位置,只能算一遍。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
const int M=;
const int fix=;
const int up=;
ll f[N][][];
ll g[N][][];
ll L,R;
int m;
ll ansl,ansr;
int a[N],cnt;
ll wrk(){
ll ret=;
for(int p=;p<=cnt;p++){
for(int x=;x<m;x++){
memset(f,,sizeof f);
memset(g,,sizeof g);
g[cnt+][fix][]=;
for(int i=cnt;i>=;i--){
for(int j=;j<=up;j++){
if(i==p){
if(x<a[i]){
if(g[i+][j][]) g[i][j][]+=g[i+][j][],f[i][j][]+=f[i+][j][];
if(g[i+][j][]) g[i][j][]+=g[i+][j][],f[i][j][]+=f[i+][j][];
}
else if(x==a[i]){
g[i][j][]+=g[i+][j][],f[i][j][]+=f[i+][j][];
g[i][j][]+=g[i+][j][],f[i][j][]+=f[i+][j][];
}
else{
g[i][j][]+=g[i+][j][],f[i][j][]+=f[i+][j][];
}
continue;
} for(int k=;k<m;k++){
if(i>p){//before
if(j+k>up) continue; if(k<a[i]){
g[i][j+k][]+=g[i+][j][],f[i][j+k][]+=f[i+][j][]+(i-p)*k*g[i+][j][];
g[i][j+k][]+=g[i+][j][],f[i][j+k][]+=f[i+][j][]+(i-p)*k*g[i+][j][];
}
else if(k==a[i]){
g[i][j+k][]+=g[i+][j][],f[i][j+k][]+=f[i+][j][]+(i-p)*k*g[i+][j][];
g[i][j+k][]+=g[i+][j][],f[i][j+k][]+=f[i+][j][]+(i-p)*k*g[i+][j][];
}
else{
g[i][j+k][]+=g[i+][j][],f[i][j+k][]+=f[i+][j][]+(i-p)*k*g[i+][j][];
}
}
else{//after
if(j-k<) continue; if(k<a[i]){
f[i][j-k][]+=f[i+][j][]+g[i+][j][]*(p-i)*k,g[i][j-k][]+=g[i+][j][];
f[i][j-k][]+=f[i+][j][]+g[i+][j][]*(p-i)*k,g[i][j-k][]+=g[i+][j][];
}
else if(k==a[i]){
f[i][j-k][]+=f[i+][j][]+g[i+][j][]*(p-i)*k,g[i][j-k][]+=g[i+][j][];
f[i][j-k][]+=f[i+][j][]+g[i+][j][]*(p-i)*k,g[i][j-k][]+=g[i+][j][];
}
else{
f[i][j-k][]+=f[i+][j][]+g[i+][j][]*(p-i)*k,g[i][j-k][]+=g[i+][j][];
}
}
}
}
}
for(int j=;j<=up;j++){
if((fix-x<=j)&&(j<x+fix)){
ret+=f[][j][]+f[][j][];
}
}
}
}
return ret;
}
int main(){
scanf("%lld%lld",&L,&R);
scanf("%d",&m);
L--;
cnt=;
while(L){
a[++cnt]=L%m;
L/=m;
}
if(cnt==){
ansl=;
}
else{
ansl=wrk();
} cnt=;
while(R){
a[++cnt]=R%m;
R/=m;
}
ansr=wrk();
printf("%lld",ansr-ansl);
}
法二:大众法。
直接钦定1号位置是最优位置,计算出来所有的总和ans
调整。
枚举位置p从2~cnt,表示要计算从p-1移动到p,会有多少个数的代价减少多少。
代价就是,sum(1,p-1)-sum(p,cnt)
设f[i][a-b][0/1]表示,第i位,这个sum的差值,有没有限制情况下,多少个数符合这个情况。
循环完一个p之后,
把a-b<0的f,ans-=(a-b)*f[i][a-b][0/1]
a-b>=0的不管。
这样进行cnt次,一定可以把所有的数移动到最优解的位置。
网上题解很多,代码就不贴了。(我也没写)
[SCOI2014]方伯伯的商场之旅的更多相关文章
- [BZOJ3598][SCOI2014]方伯伯的商场之旅(数位DP,记忆化搜索)
3598: [Scoi2014]方伯伯的商场之旅 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 449 Solved: 254[Submit][Sta ...
- 洛谷P3286 [SCOI2014]方伯伯的商场之旅
题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一 ...
- 【bzoj3598】: [Scoi2014]方伯伯的商场之旅
Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的 ...
- 【数位DP】SCOI2014 方伯伯的商场之旅
题目内容 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子. 说来也巧,位置在 \(i\) 的人面前的第 \(j\) 堆的石子的数量,刚好是 \(i\) 写成 ...
- bzoj3598 [Scoi2014]方伯伯的商场之旅
数位dp,我们肯定枚举集合的位置,但是如果每次都重新dp的话会很麻烦,所以我们可以先钦定在最低位集合,dp出代价,然后再一步步找到正确的集合点,每次更改的代价也dp算就好了. #include < ...
- 2019.03.28 bzoj3598: [Scoi2014]方伯伯的商场之旅(带权中位数+数位dp)
传送门 题意咕咕咕自己读吧挺简单的 思路: 由带权中位数的性质可以得到对于每个数放在每个二进制位的代价一定是个单调或者单峰函数,因此我们先把所有的数都挪到第一个位置,然后依次向右枚举峰点(极值点)把能 ...
- BZOJ.3598.[SCOI2014]方伯伯的商场之旅(贪心 数位DP)
题目链接 先考虑,对于确定的一个数,怎样移动代价最少(或者移到哪个位置最优)? 假设我们都移到下标\(1\)位置(设集合点为\(1\)),那么移动到下标\(2\)与\(1\)相比代价差为:\(下标&l ...
- 【bzoj3598】 Scoi2014—方伯伯的商场之旅
http://www.lydsy.com/JudgeOnline/problem.php?id=3598 (题目链接) 题意 Solution 原来这就是极水的数位dp,呵呵= =,感觉白学了.htt ...
- BZOJ3598 SCOI2014方伯伯的商场之旅(数位dp)
看到数据范围就可以猜到数位dp了.显然对于一个数最后移到的位置应该是其中位数.于是考虑枚举移到的位置,那么设其左边和为l,左右边和为r,该位置数为p,则需要满足l+p>=r且r+p>=l. ...
随机推荐
- # RocEDU.课程设计2018 第三周进展 博客补交
RocEDU.课程设计2018 第三周进展 博客补交 本周计划完成的任务 (1).本周计划完成在平板电脑上实现程序的功能,跟第二周计划完成任务基本相似. 本周实际完成情况 (1).实际完成情况还差最后 ...
- Kubernetes学习之路(二十五)之Helm程序包管理器
目录 1.Helm的概念和架构 2.部署Helm (1)下载helm (2)部署Tiller 3.helm的使用 4.chart 目录结构 5.chart模板 6.定制安装MySQL chart (1 ...
- [SHOI2012]随机树[期望dp]
题意 初始 \(1\) 个节点,每次选定一个叶子节点并加入两个儿子直到叶子总数为 \(n\),问叶子节点深度和的平均值的期望以及最大叶子深度的期望. \(n\leq 100\) . 分析 对于第一问, ...
- jira webhook 事件触发并程序代码调用jenkins接口触发构建操作
要解决的问题 开发管理工具触发站点构建事件,事件处理中需要调用Jenkins接口开始构建动作. 我的应用场景: 使用jira作为管理工具,在jira中创建自定义的工作流来规定测试,上线,发布等流程,并 ...
- photoshop cs6安装过程中安装程序遇到错误:请重启计算机,解决办法
1.关闭防火墙和杀毒软件 2.删除注册表 依次展开HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager目录,找到其中的 ...
- VLAN入门知识
版权声明: https://blog.csdn.net/xinyuan510214/article/details/52020987 本文乃fireaxe原创,使用GPL发布,可以自由拷贝,转载.但转 ...
- Apache Ignite 学习笔记(一): Ignite介绍、部署安装和REST/SQL客户端使用
Apache Ignite 介绍 Ignite是什么呢?先引用一段官网关于Ignite的描述: Ignite is memory-centric distributed database, cachi ...
- NO.3:自学tensorflow之路------MNIST识别,神经网络拓展
引言 最近自学GRU神经网络,感觉真的不简单.为了能够快速跑完程序,给我的渣渣笔记本(GT650M)也安装了一个GPU版的tensorflow.顺便也更新了版本到了tensorflow-gpu 1.7 ...
- PAT甲题题解-1002. A+B for Polynomials (25)-多项式相加
注意两点:1.系数也有可能加起来为负!!!一开始我if里面判断为>0导致有样例没过...2.如果最后所有指数的系数都为0,输出一个0即可,原本以为是输出 1 0 0.0... #include ...
- Alpha阶段个人贡献分及转会人员确定
请各个团队协商确定个人贡献分,评分根据之前个团队确定的规则进行.每个团队的个人贡献分总数为50*N,N为团队的人数. 个人贡献分要求:必须是一个自然数,每个人分数互不相同,并且和为50*N. 请各个团 ...