NumPy 统计函数
NumPy 统计函数
NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等。 函数说明如下:
numpy.amin() 和 numpy.amax()
numpy.amin() 用于计算数组中的元素沿指定轴的最小值。
numpy.amax() 用于计算数组中的元素沿指定轴的最大值。
实例
输出结果为:
我们的数组是:
[[3 7 5]
[8 4 3]
[2 4 9]] 调用 amin() 函数:
[3 3 2] 再次调用 amin() 函数:
[2 4 3] 调用 amax() 函数:
9 再次调用 amax() 函数:
[8 7 9]
numpy.ptp()
numpy.ptp()函数计算数组中元素最大值与最小值的差(最大值 - 最小值)。
实例
输出结果为:
我们的数组是:
[[3 7 5]
[8 4 3]
[2 4 9]] 调用 ptp() 函数:
7 沿轴 1 调用 ptp() 函数:
[4 5 7] 沿轴 0 调用 ptp() 函数:
[6 3 6]
numpy.percentile()
百分位数是统计中使用的度量,表示小于这个值的观察值的百分比。 函数numpy.percentile()接受以下参数。
numpy.percentile(a, q, axis)
参数说明:
- a: 输入数组
- q: 要计算的百分位数,在 0 ~ 100 之间
- axis: 沿着它计算百分位数的轴
首先明确百分位数:
第 p 个百分位数是这样一个值,它使得至少有 p% 的数据项小于或等于这个值,且至少有 (100-p)% 的数据项大于或等于这个值。
举个例子:高等院校的入学考试成绩经常以百分位数的形式报告。比如,假设某个考生在入学考试中的语文部分的原始分数为 54 分。相对于参加同一考试的其他学生来说,他的成绩如何并不容易知道。但是如果原始分数54分恰好对应的是第70百分位数,我们就能知道大约70%的学生的考分比他低,而约30%的学生考分比他高。
这里的 p = 70。
实例
输出结果为:
我们的数组是:
[[10 7 4]
[ 3 2 1]]
调用 percentile() 函数:
3.5
[6.5 4.5 2.5]
[7. 2.]
[[7.]
[2.]]
numpy.median()
numpy.median() 函数用于计算数组 a 中元素的中位数(中值)
实例
输出结果为:
我们的数组是:
[[30 65 70]
[80 95 10]
[50 90 60]] 调用 median() 函数:
65.0 沿轴 0 调用 median() 函数:
[50. 90. 60.] 沿轴 1 调用 median() 函数:
[65. 80. 60.]
numpy.mean()
numpy.mean() 函数返回数组中元素的算术平均值。 如果提供了轴,则沿其计算。
算术平均值是沿轴的元素的总和除以元素的数量。
实例
输出结果为:
我们的数组是:
[[1 2 3]
[3 4 5]
[4 5 6]] 调用 mean() 函数:
3.6666666666666665 沿轴 0 调用 mean() 函数:
[2.66666667 3.66666667 4.66666667] 沿轴 1 调用 mean() 函数:
[2. 4. 5.]
numpy.average()
numpy.average() 函数根据在另一个数组中给出的各自的权重计算数组中元素的加权平均值。
该函数可以接受一个轴参数。 如果没有指定轴,则数组会被展开。
加权平均值即将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数。
考虑数组[1,2,3,4]和相应的权重[4,3,2,1],通过将相应元素的乘积相加,并将和除以权重的和,来计算加权平均值。
加权平均值 = (1*4+2*3+3*2+4*1)/(4+3+2+1)
实例
输出结果为:
我们的数组是:
[1 2 3 4] 调用 average() 函数:
2.5 再次调用 average() 函数:
2.0 权重的和:
(2.0, 10.0)
在多维数组中,可以指定用于计算的轴。
实例
输出结果为:
我们的数组是:
[[0 1]
[2 3]
[4 5]] 修改后的数组:
[0.625 2.625 4.625] 修改后的数组:
(array([0.625, 2.625, 4.625]), array([8., 8., 8.]))
标准差
标准差是一组数据平均值分散程度的一种度量。
标准差是方差的算术平方根。
标准差公式如下:
std = sqrt(mean((x - x.mean())**2))
如果数组是 [1,2,3,4],则其平均值为 2.5。 因此,差的平方是 [2.25,0.25,0.25,2.25],并且其平均值的平方根除以 4,即 sqrt(5/4) ,结果为 1.1180339887498949。
实例
输出结果为:
1.1180339887498949
方差
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数,即 mean((x - x.mean())** 2)。
换句话说,标准差是方差的平方根。
实例
输出结果为:
1.25
NumPy 统计函数
NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等。 函数说明如下:
numpy.amin() 和 numpy.amax()
numpy.amin() 用于计算数组中的元素沿指定轴的最小值。
numpy.amax() 用于计算数组中的元素沿指定轴的最大值。
实例
输出结果为:
我们的数组是:[[375][843][249]]调用 amin()函数:[332]再次调用 amin()函数:[243]调用 amax()函数:9再次调用 amax()函数:[879]
numpy.ptp()
numpy.ptp()函数计算数组中元素最大值与最小值的差(最大值 - 最小值)。
实例
输出结果为:
我们的数组是:[[375][843][249]]调用 ptp()函数:7沿轴1调用 ptp()函数:[457]沿轴0调用 ptp()函数:[636]
numpy.percentile()
百分位数是统计中使用的度量,表示小于这个值的观察值的百分比。 函数numpy.percentile()接受以下参数。
numpy.percentile(a, q, axis)
参数说明:
- a: 输入数组
- q: 要计算的百分位数,在 0 ~ 100 之间
- axis: 沿着它计算百分位数的轴
首先明确百分位数:
第 p 个百分位数是这样一个值,它使得至少有 p% 的数据项小于或等于这个值,且至少有 (100-p)% 的数据项大于或等于这个值。
举个例子:高等院校的入学考试成绩经常以百分位数的形式报告。比如,假设某个考生在入学考试中的语文部分的原始分数为 54 分。相对于参加同一考试的其他学生来说,他的成绩如何并不容易知道。但是如果原始分数54分恰好对应的是第70百分位数,我们就能知道大约70%的学生的考分比他低,而约30%的学生考分比他高。
这里的 p = 70。
实例
输出结果为:
我们的数组是:[[1074][321]]调用 percentile()函数:3.5[6.54.52.5][7.2.][[7.][2.]]
numpy.median()
numpy.median() 函数用于计算数组 a 中元素的中位数(中值)
实例
输出结果为:
我们的数组是:[[306570][809510][509060]]调用 median()函数:65.0沿轴0调用 median()函数:[50.90.60.]沿轴1调用 median()函数:[65.80.60.]
numpy.mean()
numpy.mean() 函数返回数组中元素的算术平均值。 如果提供了轴,则沿其计算。
算术平均值是沿轴的元素的总和除以元素的数量。
实例
输出结果为:
我们的数组是:[[123][345][456]]调用 mean()函数:3.6666666666666665沿轴0调用 mean()函数:[2.666666673.666666674.66666667]沿轴1调用 mean()函数:[2.4.5.]
numpy.average()
numpy.average() 函数根据在另一个数组中给出的各自的权重计算数组中元素的加权平均值。
该函数可以接受一个轴参数。 如果没有指定轴,则数组会被展开。
加权平均值即将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数。
考虑数组[1,2,3,4]和相应的权重[4,3,2,1],通过将相应元素的乘积相加,并将和除以权重的和,来计算加权平均值。
加权平均值=(1*4+2*3+3*2+4*1)/(4+3+2+1)
实例
输出结果为:
我们的数组是:[1234]调用 average()函数:2.5再次调用 average()函数:2.0权重的和:(2.0,10.0)
在多维数组中,可以指定用于计算的轴。
实例
输出结果为:
我们的数组是:[[01][23][45]]修改后的数组:[0.6252.6254.625]修改后的数组:(array([0.625,2.625,4.625]), array([8.,8.,8.]))
标准差
标准差是一组数据平均值分散程度的一种度量。
标准差是方差的算术平方根。
标准差公式如下:
std = sqrt(mean((x - x.mean())**2))
如果数组是 [1,2,3,4],则其平均值为 2.5。 因此,差的平方是 [2.25,0.25,0.25,2.25],并且其平均值的平方根除以 4,即 sqrt(5/4) ,结果为 1.1180339887498949。
实例
输出结果为:
1.1180339887498949
方差
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数,即 mean((x - x.mean())** 2)。
换句话说,标准差是方差的平方根。
实例
输出结果为:
1.25
NumPy 统计函数的更多相关文章
- NumPy统计函数
NumPy - 统计函数 NumPy 有很多有用的统计函数,用于从数组中给定的元素中查找最小,最大,百分标准差和方差等. 函数说明如下: numpy.amin() 和 numpy.amax() 这些函 ...
- 14、numpy——统计函数
NumPy 统计函数 NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等. 函数说明如下:(沿哪条轴执行,就是是最后结果的形式) 1.numpy.amin() 和 ...
- NumPy——统计函数
引入模块import numpy as np 1.numpy.sum(a, axis=None)/a.sum(axis=None) 根据给定轴axis计算数组a相关元素之和,axis整数或元组,不指定 ...
- Lesson17——NumPy 统计函数
NumPy 教程目录 1 NumPy 统计函数 NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等. 函数说明如下 1.1 统计 method descripti ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 统计函数
NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等. numpy.amin() 用于计算数组中的元素沿指定轴的最小值. numpy.amax() 用于计算数组中的 ...
- 数据分析 大数据之路 四 numpy 2
NumPy 数学函数 NumPy 提供了标准的三角函数:sin().cos().tan(import numpy as np a = np.array([0,30,45,60,90])print (' ...
- numpy学习笔记(三)
(1)numpy的位操作 序号 操作及描述 1. bitwise_and 对数组元素执行位与操作 2. bitwise_or 对数组元素执行位或操作 3. ...
- NumPy教程目录
NumPy Ndarray对象 NumPy数组属性 NumPy数据类型 NumPy数组创建例程 NumPy来自现有数据的数组 NumPy来自数值范围的数组 NumPy切片和索引 NumPy - 高级索 ...
- Python之Numpy详细教程
NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...
随机推荐
- mezzanine的page表
class Orderable(with_metaclass(OrderableBase, models.Model)): """ Abstract model that ...
- C#USB设备枚举Kernel32的PInvoke
using System; using System.Runtime.InteropServices; using System.Security; namespace Splash { #regio ...
- Centos 7 安装 sphinx2.2 (转)
一.首先到Sphinx官网找到下载地址:http://sphinxsearch.com/downloads/release/如果你比较懒,好吧:http://sphinxsearch.com/file ...
- 【开发工具】 JEECG_3.7新版开发工具
链接:http://pan.baidu.com/s/1gfthmAf 密码:2yfv
- Spring boot 错误处理机制
请求方式时,若不存在 浏览器出现White label Error Page 错误页面 其他客户端出现响应一个JSON格式文本包含错误码等信息 浏览器发送请求的请求头: 客户端请求头 这样就能区分来自 ...
- python 阿狸的进阶之路(4)
装饰器 #1.开放封闭原则:对扩展开放,对修改是封闭#2.装饰器:装饰它人的,器指的是任意可调用对象,现在的场景装饰器->函数,被装饰的对象也是->函数#原则:1.不修改被装饰对象的源代码 ...
- spring boot 的常用注解
SpringBoot用于简化Spring应用的搭建,开发及部署:该框架采用注解的方式进行配置可以很方便的构建Spring应用. 1. @SpringBootApplication @SpringBoo ...
- NSNotification相关
NSNotification处理过程是一个同步的过程.它的消息回调函数执行的线程跟发送消息代码(也就是postNotification)所在的线程相同,一个Notification发出后,在回调函数执 ...
- position: relative;导致页面卡顿
1.现象: vue单页面项目 只有在某个页面切换的时候出现页面卡顿现象 经过长时间排查 确定最终原因是 该模块外层div使用 position: relative 根本原因:待完善
- javascript_ajax 地址三级联动
1.三级地址联动思路如下: 2.建立数据库.这里直接使用网上的地址数库,最后一个字段无用,先不去管它 3.建立一个server.php 文件 <?php // 数据库连接 mysql_conne ...