C. Table Tennis Game 2

题目连接:

http://codeforces.com/contest/765/problem/C

Description

Misha and Vanya have played several table tennis sets. Each set consists of several serves, each serve is won by one of the players, he receives one point and the loser receives nothing. Once one of the players scores exactly k points, the score is reset and a new set begins.

Across all the sets Misha scored a points in total, and Vanya scored b points. Given this information, determine the maximum number of sets they could have played, or that the situation is impossible.

Note that the game consisted of several complete sets.

Input

The first line contains three space-separated integers k, a and b (1 ≤ k ≤ 109, 0 ≤ a, b ≤ 109, a + b > 0).

Output

If the situation is impossible, print a single number -1. Otherwise, print the maximum possible number of sets.

Sample Input

11 11 5

Sample Output

1

Hint

题意

两个人在打乒乓球,每一个set是这样的:每一局会有一个人胜利,胜利者得1分,失败者得0分,如果有人得了k分,那么这个set结束。

现在这两个人打了若干个set,A总共拿了a分,B总共拿了b分,问你可不可能。

题解:

答案比较显然是a/k+b/k。

但是注意这个坑点,2 3 1这个数据。

把这个数据过了就好了。

代码

#include<bits/stdc++.h>
using namespace std;
long long k,a,b;
int main()
{
cin>>k>>a>>b;
if(a<b)swap(a,b);
if(a<k&&b<k){
cout<<"-1"<<endl;
return 0;
}
long long ans = a/k + b/k;
if(a%k&&b/k==0){
cout<<"-1"<<endl;
return 0;
}
if(a/k==0&&b%k==0){
cout<<"-1"<<endl;
return 0;
}
cout<<a/k+b/k<<endl;
}

Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) C. Table Tennis Game 2 水题的更多相关文章

  1. Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) A B C D 水 模拟 构造

    A. Neverending competitions time limit per test 2 seconds memory limit per test 512 megabytes input ...

  2. Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) C - Table Tennis Game 2

    地址:http://codeforces.com/contest/765/problem/C 题目: C. Table Tennis Game 2 time limit per test 2 seco ...

  3. Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) F. Souvenirs 线段树套set

    F. Souvenirs 题目连接: http://codeforces.com/contest/765/problem/F Description Artsem is on vacation and ...

  4. Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) E. Tree Folding 拓扑排序

    E. Tree Folding 题目连接: http://codeforces.com/contest/765/problem/E Description Vanya wants to minimiz ...

  5. Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) D. Artsem and Saunders 数学 构造

    D. Artsem and Saunders 题目连接: http://codeforces.com/contest/765/problem/D Description Artsem has a fr ...

  6. Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) B. Code obfuscation 水题

    B. Code obfuscation 题目连接: http://codeforces.com/contest/765/problem/B Description Kostya likes Codef ...

  7. Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) A. Neverending competitions 水题

    A. Neverending competitions 题目连接: http://codeforces.com/contest/765/problem/A Description There are ...

  8. Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) E. Tree Folding

    地址:http://codeforces.com/contest/765/problem/E 题目: E. Tree Folding time limit per test 2 seconds mem ...

  9. Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) D. Artsem and Saunders

    地址:http://codeforces.com/contest/765/problem/D 题目: D. Artsem and Saunders time limit per test 2 seco ...

随机推荐

  1. UVALive - 4636 Cubist Artwork(贪心)

    题目链接 题意 给出正视图和侧视图,判断最少用几个立方体 分析 若存在高度相同的立方块,则以数目多的那面为准. #include <iostream> #include <cstdi ...

  2. Dubbo学习笔记11:使用Dubbo中需要注意的一些事情

    指定方法异步调用 前面我们讲解了通过设置ReferenceConfig的setAsync()方法来让整个接口里的所有方法变为异步调用,那么如何指定某些方法为异步调用呢?下面讲解下如何正确地设置默写方法 ...

  3. [BZOJ 4350]括号序列再战猪猪侠 题解(区间DP)

    [BZOJ 4350]括号序列再战猪猪侠 Description 括号序列与猪猪侠又大战了起来. 众所周知,括号序列是一个只有(和)组成的序列,我们称一个括号 序列S合法,当且仅当: 1.( )是一个 ...

  4. 【算法】Huffman编码(数据结构+算法)

    1.描述 Huffman编码,将字符串利用C++编码输出该字符串的Huffman编码. Huffman树是一种特殊结构的二叉树,由Huffman树设计的二进制前缀编码,也称为Huffman编码在通信领 ...

  5. Linux下select&poll&epoll的实现原理(一)【转】

    转自:http://www.cnblogs.com/lanyuliuyun/p/5011526.html 最近简单看了一把 linux-3.10.25 kernel中select/poll/epoll ...

  6. springcloud Eureka自我保护机制

    自我保护背景 首先对Eureka注册中心需要了解的是Eureka各个节点都是平等的,没有ZK中角色的概念, 即使N-1个节点挂掉也不会影响其他节点的正常运行. 默认情况下,如果Eureka Serve ...

  7. centos7 部署 docker swarm

    =============================================== 2019/4/9_第3次修改                       ccb_warlock 更新说 ...

  8. css部分复习整理

    CSS代码语法 css 样式由选择符和声明组成,而声明又由属性和值组成,如下图所示: 选择符:又称选择器,指明网页中要应用样式规则的元素,如本例中是网页中所有的段(p)的文字将变成蓝色,而其他的元素( ...

  9. JavaScript之this学习心得

    this在运行时绑定,并不是在编写时绑定,它的上下文取决于函数调用的各种条件.this既不指向自身,也不指向函数的词法作用域.this是在函数被调用时发生的绑定,指向什么完全取决于函数在哪里被调用. ...

  10. POJ 3666 Making the Grade(二维DP)

    题目链接:http://poj.org/problem?id=3666 题目大意:给出长度为n的整数数列,每次可以将一个数加1或者减1,最少要多少次可以将其变成单调不降或者单调不增(题目BUG,只能求 ...