架构:The Onion Architecture : part 1(洋葱架构:第一篇)(转载)
原文地址:http://jeffreypalermo.com/blog/the-onion-architecture-part-1/。
I've spoken several times about a specific type of architecture I call "Onion Architecture". I've found that it leads to more maintainable applications since it emphasizes separation of concerns throughout the system. I must set the context for the use of this architecture before proceeding. This architecture is not appropriate for small websites. It is appropriate for long-lived business applications as well as applications with complex behavior. It emphasizes the use of interfaces for behavior contracts, and it forces the externalization of infrastructure.

The diagram you see here is a representation of traditional layered architecture. This is the basic architecture I see most frequently used. Each subsequent layer depends on the layers beneath it, and then every layer normally will depend on some common infrastructure and utility services. The big drawback to this top-down layered architecture is the coupling that it creates. Each layer is coupled to the layers below it, and each layer is often coupled to various infrastructure concerns. However, without coupling, our systems wouldn't do anything useful, but this architecture creates unnecessary coupling.
The biggest offender (and most common) is the coupling of UI and business logic to data access. Yes, UI is coupled to data access with this approach. Transitive dependencies are still dependencies. The UI can't function if business logic isn't there. Business logic can't function if data access isn't there. I'm intentionally ignoring infrastructure here because this typically varies from system to system. Data access changes frequently. Historically, the industry has modified data access techniques at least every three years; therefore, we can count on needing to modify data access three years from now for any healthy, long-lived systems that's mission-critical to the business. We often don't keep systems up-to-date because it's impossible to do. If coupling prevents easily upgrading parts of the system, then the business has no choice but to let the system fall behind into a state of disrepair. This is how legacy systems become stale, and eventually they are rewritten.
I propose a new approach to architecture. Honestly, it's not completely new, but I'm proposing it as a named, architectural pattern. Patterns are useful because it gives software professionals a common vocabulary with which to communicate. There are a lot of aspects to the Onion Architecture, and if we have a common term to describe this approach, we can communicate more effectively.

The diagram to the left depicts the Onion Architecture. The main premise is that it controls coupling. The fundamental rule is that all code can depend on layers more central, but code cannot depend on layers further out from the core. In other words, all coupling is toward the center. This architecture is unashamedly biased toward object-oriented programming, and it puts objects before all others.
In the very center we see the Domain Model, which represents the state and behavior combination that models truth for the organization. Around the Domain Model are other layers with more behavior. The number of layers in the application core will vary, but remember that the Domain Model is the very center, and since all coupling is toward the center, the Domain Model is only coupled to itself. The first layer around the Domain Model is typically where we would find interfaces that provide object saving and retrieving behavior, called repository interfaces. The object saving behavior is not in the application core, however, because it typically involves a database. Only the interface is in the application core. Out on the edges we see UI, Infrastructure, and Tests. The outer layer is reserved for things that change often. These things should be intentionally isolated from the application core. Out on the edge, we would find a class that implements a repository interface. This class is coupled to a particular method of data access, and that is why it resides outside the application core. This class implements the repository interface and is thereby coupled to it.
The Onion Architecture relies heavily on the Dependency Inversion principle. The application core needs implementation of core interfaces, and if those implementing classes reside at the edges of the application, we need some mechanism for injecting that code at runtime so the application can do something useful.
The database is not the center. It is external. Externalizing the database can be quite a change for some people used to thinking about applications as "database applications". With Onion Architecture, there are no database applications. There are applications that might use a database as a storage service but only though some external infrastructure code that implements an interface which makes sense to the application core. Decoupling the application from the database, file system, etc, lowers the cost of maintenance for the life of the application.
Alistair Cockburn has written a bit about Hexagonal architecture. Hexagonal architecture and Onion Architecture share the following premise: Externalize infrastructure and write adapter code so that the infrastructure does not become tightly coupled.
I'll be writing more about the Onion Architecture as a default approach for building enterprise applications. I will stay in the enterprise system space and all discussion will reside in that context. This gets even more interesting when there are multiple processes making up a single software system.
架构:The Onion Architecture : part 1(洋葱架构:第一篇)(转载)的更多相关文章
- 企业架构研究总结(38)——TOGAF架构能力框架之架构能力建设和架构治理
为了确保架构功能在企业中能够被成功地运用,企业需要通过建立适当的组织结构.流程.角色.责任和技能来实现其自身的企业架构能力,而这也正是TOGAF的架构能力框架(Architecture Capabil ...
- 架构:The Onion Architecture : part 3(洋葱架构:第三篇)(转载)
In my previous installments, I described what has become my approach to defining the architecture fo ...
- 架构:The Onion Architecture : part 2(洋葱架构:第二篇)(转载)
原位地址:http://jeffreypalermo.com/blog/the-onion-architecture-part-2/. In part 1, I introduced an archi ...
- 干净的架构The Clean Architecture
干净的架构The Clean Architecture 这是著名软件大师Bob大叔提出的一种架构,也是当前各种语言开发架构.干净架构提出了一种单向依赖关系,从而从逻辑上形成一种向上的抽象系统. 我们经 ...
- 企业架构(Enterprise Architecture)
ylbtech-Miscellaneos: 企业架构(Enterprise Architecture) A,返回顶部 1, 简称EA.是指对企业事业信息管理系统中具有体系的.普遍性的问题而提供的通用解 ...
- [Architecture Design] 3-Layer基础架构
[Architecture Design] 3-Layer基础架构 三层式体系结构 只要是软件从业人员,不管是不是本科系出身的,相信对于三层式体系结构一定都不陌生.在三层式体系结构中,将软件开发所产出 ...
- 清晰架构(Clean Architecture)的Go微服务: 程序结构
我使用Go和gRPC创建了一个微服务,并试图找出最佳的程序结构,它可以用作我未来程序的模板. 我有Java背景,并发现自己在Java和Go之间挣扎,它们之间的编程理念完全不同.我写了一系列关于在项目工 ...
- 清晰架构(Clean Architecture)的Go微服务: 设计原则
我最近写了一个Go微服务应用程序,这个程序的设计来自三个灵感: 清晰架构"Clean Architecture"¹ and SOLID (面向对象设计)² 设计 原则³ Sprin ...
- 清晰架构(Clean Architecture)的Go微服务: 程序容器(Application Container)
清晰架构(Clean Architecture)的一个理念是隔离程序的框架,使框架不会接管你的应用程序,而是由你决定何时何地使用它们.在本程序中,我特意不在开始时使用任何框架,因此我可以更好地控制程序 ...
随机推荐
- ftp配置文件
vsftpd配置文件采用“#”作为注释符,以“#”开头的行和空白行在解析时将被忽略,其余的行被视为配置命令行,每个配置命令的“=”两边不要留有空格.对于每个配置命令,在配置文件中还列出了相关的配置说明 ...
- nio--自己总结
阻塞/非阻塞 + 同步/异步 其实,这两者存在本质的区别,面向的对象是不同的. 阻塞/非阻塞:进程/线程需要操作的数据如果尚未就绪,是否妨碍了当前进程/线程的后续操作. 同步/异步:数据如果尚未就 ...
- shell中信号处理
参考: Shell 脚本中信号处理实践 Linux Shell 的信号 trap 功能你必须知道的细节 在 unix 里,可能发生的每一种类型的事件都是由一个独立的信号来描述,每一个信号都是一个小 ...
- linux系统下创建lvm挂载到指定目录
1 .背景 在企业中有时我们为方便安装软件.数据的管理,需要把安装软件.数据放到固定目录下,磁盘满了方便扩展,这里假如需要一个/data目录存放数据,并单独进行挂载. 2.操作步骤 2.1 划分磁盘 ...
- JS中的的"闭包"?深入Javascript之this
看了知乎上的话题 如何才能通俗易懂的解释javascript里面的‘闭包’?,受到一些启发,因此结合实例将回答中几个精要的答案做一个简单的分析以便加深理解. 1. "闭包就是跨作用域访问变量 ...
- java 常用面试题
基础问题和思想:1.抽象类和接口的区别(单纯的语法区别只能给一半分,要说出来适用场景):2.hashcode()和equals()的关系:3.HashMap(Set)底层机制(用到的数据结构以及代码原 ...
- [代码审计]phpshe开源商城后台两处任意文件删除至getshell
0x00 背景 这套系统审了很久了,审计的版本是1.6,前台审不出个所以然来.前台的限制做的很死. 入库的数据都是经过mysql_real_escape_string,htmlspecialchars ...
- C#开发Unity游戏教程循环遍历做出判断及Unity游戏示例
C#开发Unity游戏教程循环遍历做出判断及Unity游戏示例 Unity中循环遍历每个数据,并做出判断 很多时候,游戏在玩家做出判断以后,游戏程序会遍历玩家身上大量的所需数据,然后做出判断,即首先判 ...
- windows系统,联系人文件。个性化。
韩梦飞沙 韩亚飞 313134555@qq.com yue31313 han_meng_fei_sha ======= 文件下载链接:
- Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) A. Neverending competitions 水题
A. Neverending competitions 题目连接: http://codeforces.com/contest/765/problem/A Description There are ...