P4717 快速沃尔什变换FWT 模板题
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef long long ll;
typedef pair<int,int> Pii;
const ll mod=;
const int maxn = 3e6+;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
// head int a[maxn],b[maxn],c[maxn];
void FWT_or(int *a,int N,int opt)
{
for(int i=;i<N;i<<=)
for(int p=i<<,j=;j<N;j+=p)
for(int k=;k<i;++k)
if(opt==)a[i+j+k]=(a[j+k]+a[i+j+k])%mod;
else a[i+j+k]=(a[i+j+k]+mod-a[j+k])%mod;
}
void FWT_and(int *a,int N,int opt)
{
for(int i=;i<N;i<<=)
for(int p=i<<,j=;j<N;j+=p)
for(int k=;k<i;++k)
if(opt==)a[j+k]=(a[j+k]+a[i+j+k])%mod;
else a[j+k]=(a[j+k]+mod-a[i+j+k])%mod;
}
void FWT_xor(int *a,int N,int opt) //opt=1 正变换 opt=-1 逆变换
{
ll inv2=powmod(,mod-);
for(int i=;i<N;i<<=)
for(int p=i<<,j=;j<N;j+=p)
for(int k=;k<i;++k)
{
int X=a[j+k],Y=a[i+j+k];
a[j+k]=(X+Y)%mod;a[i+j+k]=(X+mod-Y)%mod;
if(opt==-)a[j+k]=1ll*a[j+k]*inv2%mod,a[i+j+k]=1ll*a[i+j+k]*inv2%mod;
}
}
int main()
{
int n;
scanf("%d",&n);n=<<n;
for(int i=;i<n;i++) scanf("%d",&a[i]);
for(int i=;i<n;i++) scanf("%d",&b[i]); FWT_or(a,n,);FWT_or(b,n,);
for(int i=;i<n;i++) c[i]=1ll*a[i]*b[i]%mod;
FWT_or(c,n,-);
for(int i=;i<n;i++) printf("%d ",c[i]); printf("\n"); FWT_or(a,n,-),FWT_or(b,n,-);
FWT_and(a,n,),FWT_and(b,n,);
for(int i=;i<n;i++) c[i]=1ll*a[i]*b[i]%mod;
FWT_and(c,n,-);
for(int i=;i<n;i++) printf("%d ",c[i]); printf("\n"); FWT_and(a,n,-),FWT_and(b,n,-);
FWT_xor(a,n,),FWT_xor(b,n,);
for(int i=;i<n;i++) c[i]=1ll*a[i]*b[i]%mod;
FWT_xor(c,n,-);
for(int i=;i<n;i++) printf("%d ",c[i]); printf("\n");
return ;
}
P4717 快速沃尔什变换FWT 模板题的更多相关文章
- 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...
- 快速沃尔什变换FWT
快速沃尔什变换\(FWT\) 是一种可以快速完成集合卷积的算法. 什么是集合卷积啊? 集合卷积就是在集合运算下的卷积.比如一般而言我们算的卷积都是\(C_i=\sum_{j+k=i}A_j*B_k\) ...
- 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))
也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...
- 【学习笔鸡】快速沃尔什变换FWT
[学习笔鸡]快速沃尔什变换FWT OR的FWT 快速解决: \[ C[i]=\sum_{j|k=i} A[j]B[k] \] FWT使得我们 \[ FWT(C)=FWT(A)*FWT(B) \] 其中 ...
- 关于快速沃尔什变换(FWT)的一点学习和思考
最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集 ...
- 快速沃尔什变换 FWT 学习笔记【多项式】
〇.前言 之前看到异或就担心是 FWT,然后才开始想别的. 这次学了 FWT 以后,以后判断应该就很快了吧? 参考资料 FWT 详解 知识点 by neither_nor 集训队论文 2015 集合幂 ...
- Codeforces 662C(快速沃尔什变换 FWT)
感觉快速沃尔什变换和快速傅里叶变换有很大的区别啊orz 不是很明白为什么位运算也可以叫做卷积(或许不应该叫卷积吧) 我是看 http://blog.csdn.net/liangzhaoyang1/ar ...
- 快速沃尔什变换(FWT)学习笔记 + 洛谷P4717 [模板]
FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor ...
- 洛谷P4717 【模板】快速沃尔什变换(FWT)
题意 题目链接 Sol 背板子背板子 #include<bits/stdc++.h> using namespace std; const int MAXN = (1 << 1 ...
随机推荐
- 解决springboot乱码和window cmd乱码
@Bean public FilterRegistrationBean filterRegistrationBean() { FilterRegistrationBean registration = ...
- s5p6818 从SD卡启动程序(制作SD启动卡)
背景: 最近在学习uboot,其中有一步很重要的任务就是需要实现uboot 的验证,没有办法验证uboot是不是自己做的,那么整个开发就会收到阻碍.另外,从公司现在开发的板子来看,uboot从sd卡启 ...
- NavigatorOnLine.onLine——判断设备是否可以上网
概述:返回浏览器的联网状态.正常联网(在线)返回true,不正常联网(离线)返回false.一旦浏览器的联网状态发生改变,该属性值也会随之变化. 1.语法 let online = window.na ...
- nodejs连接mysql数据库,报错Client does not support authentication protocol requested by server的解决方法
最近想要尝试nodejs连接本地数据库,往全栈方向做一个小小的尝试,于是下载了一个 MySQL8.0,发现Navicat连接不上,结果就下载了mysql自身的Workbench,继续使用. 然而,难受 ...
- JS基础_使用工厂方法创建对象(了解下就行了,用的不多)
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- canvas验证码实现
1 <!DOCTYPE html> <html> <!-- head --> <head> <meta charset="utf-8&q ...
- Redis面试题记录--缓存双写情况下导致数据不一致问题
转载自:https://blog.csdn.net/lzhcoder/article/details/79469123 https://blog.csdn.net/u013374645/article ...
- spring-security原理学习
spring security使用分类: 如何使用spring security,相信百度过的都知道,总共有四种用法,从简到深为:1.不用数据库,全部数据写在配置文件,这个也是官方文档里面的demo: ...
- STM32窗口看门狗WWDG库函数的一点思考
WWDG当前计数器的值以及激活位和WWDG_CR这个寄存器相关.如下图所示: 而STM32f10x的库函数提供了两种设置WWDG_CR[0:6]位的方式. WWDG_SetCounter方法 #def ...
- 07_Azkaban工作流调度器简介及其安装
Azkaban介绍 Azkaban是一个Linkedin开源的一个批量工作流任务调度器.用于在一个工作流内以一个特定的顺序运行一组工作和流程. Azkaban定义了一种KV文件格式来建立任务之间的依赖 ...