title: 【概率论】2-3:贝叶斯定理(Bayes’ Theorem)

categories:

  • Mathematic
  • Probability

    keywords:
  • Bayes’ Theorem
  • 贝叶斯公式
  • Law of total Probability
  • 全概率公式

    toc: true

    date: 2018-02-02 10:10:45



Abstract: 本文是关于Bayes’ Theorem 的介绍性知识

Keywords: Bayes’ Theorem,Law of total Probability

开篇废话

今天的废话可能有点正经,就是关于Bayes’ Theorem的相关往事,做人脸识别的都会知道一个叫做联合Bayes的分类器,没错,我们当时做的时候也是第一个做了这个算法,当然,我没有自己去研究实践,最后结果不太理想,当然我不是说我去做结果就能好多少,其实投资也好做项目也好,失败向来不可怕,各种各样的死法在开始之前都有些预期,但是我们有一个期待,就是自己有个主观概率觉得我有90%可能会成功,前提是xx个项目能够顺利如期成功,但是当xx项目进展严重受阻,你就会重新评估成功概率,这个过程就可以用Bayes定理去建模;这个过程其实不可怕,最可怕的是你不知道你现在遇到了什么问题,你的小伙伴告诉你成功了,但其实根本没成功,有时候告诉你没成功,但是其实已经成功了,当一些事件结果变得不可信,那么你的评估将会变得毫无意义。

失败不可怕,可怕的是你不可控,说赚了三块钱,结果赔了五块,说赔了五块,结果赔了八块。

Bayes’ Theorem

以上为节选内容,完整原文地址:https://www.face2ai.com/Math-Probability-2-3-Bayes-Teorem转载请标明出处

【概率论】2-3:贝叶斯定理(Bayes' Theorem)的更多相关文章

  1. (main)贝叶斯统计 | 贝叶斯定理 | 贝叶斯推断 | 贝叶斯线性回归 | Bayes' Theorem

    2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会 ...

  2. 读Bayes' Theorem

    Bayes' Theorem定理的原理说明,三个简单的例子来说明用法及一些练习. Bayes' Theorem就是概率问题,论文相对比较好理解,也不必做什么笔记.

  3. Bayes' theorem (贝叶斯定理)

    前言 AI时代的到来一下子让人感觉到数学知识有些捉襟见肘,为了不被这个时代淘汰,我们需要不断的学习再学习.其中最常见的就是贝叶斯定理,这个定理最早由托马斯·贝叶斯提出. 贝叶斯方法的诞生源于他生前为解 ...

  4. 贝叶斯定理推导(Bayes' Theorem Induction)

    这里用Venn diagram来不严谨地推导一下贝叶斯定理. 假设A和B为两个不相互独立的事件. 交集(intersection):  上图红色部分即为事件A和事件B的交集. 并集(union):  ...

  5. Naive Bayes Theorem and Application - Theorem

    Naive Bayes Theorm And Application - Theorem Naive Bayes model: 1. Naive Bayes model 2. model: discr ...

  6. PRML读书笔记_绪论

    一.基本名词 泛化(generalization) 训练集所训练的模型对新数据的适用程度. 监督学习(supervised learning) 训练数据的样本包含输入向量以及对应的目标向量. 分类( ...

  7. 学习AI之NLP后对预训练语言模型——心得体会总结

    一.学习NLP背景介绍:      从2019年4月份开始跟着华为云ModelArts实战营同学们一起进行了6期关于图像深度学习的学习,初步了解了关于图像标注.图像分类.物体检测,图像都目标物体检测等 ...

  8. [机器学习] 分类 --- Naive Bayes(朴素贝叶斯)

    Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 ...

  9. 【概率论】3-6:条件分布(Conditional Distributions Part II)

    title: [概率论]3-6:条件分布(Conditional Distributions Part II) categories: Mathematic Probability keywords: ...

随机推荐

  1. java——多态例题

    class A { public String show(D obj) { return ("A and D"); } public String show(A obj) { re ...

  2. Codeforces 1249 D2. Too Many Segments (hard version)

    传送门 贪心 对于第一个不合法的位置,我们显然要通过删除几个覆盖了它的区间来使这个位置合法 显然删右端点更靠右的区间是更优的,所以就考虑优先删右端点靠右的,然后再考虑下一个不合法位置 用一个 $set ...

  3. Bloom过滤器

    提出一个问题 在我们细述Bloom过滤器之前,我们先抛出一个问题:给你一个巨大的数据集(百万级.亿级......),怎么判断一个元素是否在此数据集中?或者怎么判断一个元素不在此数据集中? 思考这个问题 ...

  4. (三)Spring框架之事务管理

    一.编程式事务管理 Spring事务管理器的接口是org.springframework.transaction.PlatformTransactionManager,事务管理器接口PlatformT ...

  5. 【Transact-SQL】计算整个表中所有值的出现的次数

    原文:[Transact-SQL]计算整个表中所有值的出现的次数 一个表有3列,5行,那么一共有15个值,现在要计算整个表中所有值在表中出现的次数,不过这里表的列数是不确定的,上面的例子是3列,实际上 ...

  6. Ubuntu 14.04 64位机上不带CUDA支持的Caffe

    Caffe是一个高效的深度学习框架.它既可以在CPU上执行也可以在GPU上执行. 下面介绍在Ubuntu上不带CUDA的Caffe配置编译过程: 1.      安装BLAS:$ sudo apt-g ...

  7. C++编译 C # 调用方法

    C++编译    C # 调用方法 编译时使用  public ref class ABC {   ... }; 调用时  右键---引用 --- 添加dll引用  即可

  8. datagrid行内编辑

    编辑属性 :editor: { type: 'text'} $('#listShow').datagrid({ height : 478, pagesize : 20, pageList : [20, ...

  9. Element-ui-Basic

    一.Layout 布局 1.基础布局 <el-row> <el-col :span="24"><div class="grid-conten ...

  10. 【数字图像处理】目标检测的图像特征提取之HOG特征

    1.HOG特征 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯 ...