特征处理是什么:

  通过特定的统计方法(数学方法)将数据转化成为算法要求的数据

sklearn特征处理API:

  sklearn.preprocessing

代码示例:  文末!

归一化:

公式:       

注意:作用于每一列,max为一列的最大值,min为一列的最小值,那么X''为最终结果,mx、mi分别为指定区间,默认mx为1,mi为0

sklearn归一化API:

  sklearn.preprocessing.MinMaxScaler

归一化总结:

  注意在特定场景下最大值与最小值是变化的,另外,最大值与最小值非常容易受到异常点的影响,所以这种方法鲁棒性较差,只适合传统精确小数据场景

标准化:

公式:

对于归一化来说,如果出现异常点,影响了最大值和最小值,那么结果显然会发生改变

对于标准化来说,如果出现异常点,由于具有一定数据量,少量的异常点对于平均值的影响并不大,从而方差改变较小

sklearn标准化API:

  sklearn.preprocessing.StandardScaler

标准化总结:

  在已有样本足够多情况下比较稳定,适合现在嘈杂的大数据

缺失值:

sklearn缺失值API:

  sklearn.preprocessing.imputer

代码示例:

 from sklearn.preprocessing import MinMaxScaler, StandardScaler, Imputer
import numpy as np def mm():
"""归一化处理
X' = (x-min)/(max-min)
X'' = X'*(mx-mi)+mi
"""
m = MinMaxScaler(feature_range=(5,10)) # 默认范围为0-1
array = [[90,2,10,40],[60,4,15,45],[75,3,13,46]]
data = m.fit_transform(array)
print(data) def standard():
"""标准化缩放
相比于归一化,标准化对于存在异常值而对结果的影响不大,适合大数据
而归一化,由于受异常点的影响,所以......
"""
s = StandardScaler()
array = [[1,-1,3], [2,4,2], [4,6,-1]]
data = s.fit_transform(array)
print(data) def im():
"""缺失值处理"""
im = Imputer(missing_values='NaN', strategy='mean', axis=0) # nan 或 NaN都可以,固定写法,填补策略(平均值),按列填充
data = im.fit_transform([[1,2],[np.nan,3],[7,6]])
print(data) if __name__ == '__main__':
mm()
standard()
im()

数据的特征预处理?(归一化)&(标准化)&(缺失值)的更多相关文章

  1. 什么是机器学习的特征工程?【数据集特征抽取(字典,文本TF-Idf)、特征预处理(标准化,归一化)、特征降维(低方差,相关系数,PCA)】

    2.特征工程 2.1 数据集 2.1.1 可用数据集 Kaggle网址:https://www.kaggle.com/datasets UCI数据集网址: http://archive.ics.uci ...

  2. 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化

    一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...

  3. 【原】关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化

    一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...

  4. 使用sklearn进行数据预处理 —— 归一化/标准化/正则化

    一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并除以其方差.得到的结果是,对于每个属 ...

  5. [Scikit-Learn] - 数据预处理 - 归一化/标准化/正则化

    reference: http://www.cnblogs.com/chaosimple/p/4153167.html 一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/ ...

  6. 特征预处理之归一化&标准化

    写在前面 这篇博客的主要内容 应用MinMaxScaler实现对特征数据进行归一化 应用StandardScaler实现对特征数据进行标准化 特征预处理 定义 ​ 通过一些转换函数将特征数据转换成更加 ...

  7. 使用Tensorflow搭建回归预测模型之二:数据准备与预处理

    前言: 在前一篇中,已经搭建好了Tensorflow环境,本文将介绍如何准备数据与预处理数据. 正文: 在机器学习中,数据是非常关键的一个环节,在模型训练前对数据进行准备也预处理是非常必要的. 一.数 ...

  8. AI学习---特征工程【特征抽取、特征预处理、特征降维】

    学习框架 特征工程(Feature Engineering) 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已 什么是特征工程: 帮助我们使得算法性能更好发挥性能而已 sklearn主 ...

  9. Alink漫谈(十) :特征工程 之 特征哈希/标准化缩放

    Alink漫谈(十) :特征工程之特征哈希/标准化缩放 目录 Alink漫谈(十) :特征工程之特征哈希/标准化缩放 0x00 摘要 0x01 相关概念 1.1 特征工程 1.2 特征缩放(Scali ...

随机推荐

  1. kill函数

    kill函数/命令产生信号 kill命令产生信号:kill -SIGKILL pid kill函数:给指定进程发送指定信号(不一定杀死) int kill(pid_t pid, int sig);   ...

  2. ie8 ajax 跨域问题

    最近做了个客服端要通过ocx获得初始化数据就是一个html页面镶嵌在一个c++做的程序里面通过c++做的程序的一个按钮来打开我的这个html页面但是页面中的ajax就是用不了又不报错 后来加入了cro ...

  3. vs.net2017在编辑的wpf的xaml文件引用本程序集下的类提示“找不到”

    local对应就是当前exe程序下的类,会提示“...命令空间...找不到...” 因为我调整过生成的,于是尝试调回来anyCPU 问题解决. 看了一下vs.net2017的所在目录"C:\ ...

  4. ArcGIS超级工具SPTOOLS-线封闭,点集转面

    一.线封闭 操作视频:https://weibo.com/tv/v/HvyvbAxKh?fid=1034:4375207666991674 将末端不闭合线,自动生成闭合的线,效果如下 原始线:末端不闭 ...

  5. otter安装、使用

    一.otter简介 otter是阿里开源的一个分布式数据库同步系统,尤其是在跨机房数据库同步方面,有很强大的功能.它是基于数据库增量日志解析,实时将数据同步到本机房或跨机房的mysql/oracle数 ...

  6. hashMap 底层原理+LinkedHashMap 底层原理+常见面试题

    1.源码 java1.7    hashMap 底层实现是数组+链表 java1.8 对上面进行优化  数组+链表+红黑树 2.hashmap  是怎么保存数据的. 在hashmap 中有这样一个结构 ...

  7. 模糊C均值聚类-FCM算法

    FCM(fuzzy c-means) 模糊c均值聚类融合了模糊理论的精髓.相较于k-means的硬聚类,模糊c提供了更加灵活的聚类结果.因为大部分情况下,数据集中的对象不能划分成为明显分离的簇,指派一 ...

  8. error C2086: “int WINGDIAPI”: 重定义

    1>------ 已启动生成: 项目: OSG_3_1_osgViewer应用基础, 配置: Debug x64 ------1>cl : 命令行 warning D9002: 忽略未知选 ...

  9. 用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别)

    # -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist fro ...

  10. 【leetcode】506. Relative Ranks

    problem 506. Relative Ranks solution1:使用优先队列: 掌握priority_queue 和 pair的使用: class Solution { public: v ...