fasttext模型 训练THUCNews
# _*_coding:utf-8 _*_
import fasttext
import jieba
from sklearn import metrics
import random
def read_file(filename):
i=0;
sentences =[]
out = open('data/cnews/fast_test.txt','a+')
with open(filename) as ft:
for line in ft:
label, content = line.strip().split('\t')
segs = jieba.cut(content)
segs = filter(lambda x:len(x)>1,segs)
sentences.append("__label__"+str(label)+"\t"+" ".join(segs))
random.shuffle(sentences)
for sentence in sentences:
out.write(sentence+"\n")
out.close()
read_file('data/cnews/cnews.train.txt')
classifier = fasttext.supervised('data/cnews/fast_train.txt','new_fasttext.model')
classifier = fasttext.load_model('new_fasttext.model.bin')
categories = ['体育', '财经','房产','家居','教育', '科技', '时尚', '时政', '游戏', '娱乐']
read_file('data/cnews/cnews.test.txt')
result = classifier.test('data/cnews/fast_test.txt')
print("准确率为:%f"%result.precision)
print("召回率为: %f"%result.recall)
with open('data/cnews/cnews.test.txt') as fw:
contents,labels = [],[]
for line in fw:
label ,content = line.strip().split('\t')
segs = jieba.cut(content)
segs = filter(lambda x:len(x)>1,segs)
contents.append(" ".join(segs))
labels.append('__label__'+label)
label_predict = [e[0] for e in classifier.predict(contents)]
print("Precision,Recall and F1-Score....")
print(metrics.classification_report(labels,label_predict,target_names=categories))
关于fasttext的使用一些疑问:fasttext.supervised的参数label_prefix 一直提示我这个参数使用有问题... 然而,搜素了半天,我也没搞明白这个参数哪里有问题
还有一点需要注意的地方:fasttext的识别标签统一需要在标签前面加上"__label__"
后续会更新fastext的原理
fasttext模型 训练THUCNews的更多相关文章
- [Kaggle] dogs-vs-cats之模型训练
上一步建立好模型之后,现在就可以训练模型了. 主要代码如下: import sys #将当期路径加入系统path中 sys.path.append("E:\\CODE\\Anaconda\\ ...
- A TensorBoard plugin for visualizing arbitrary tensors in a video as your network trains.Beholder是一个TensorBoard插件,用于在模型训练时查看视频帧。
Beholder is a TensorBoard plugin for viewing frames of a video while your model trains. It comes wit ...
- AI佳作解读系列(一)——深度学习模型训练痛点及解决方法
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公 ...
- VGG19模型训练+读取
目录 VGG-19模型简单介绍 VGG-19模型文件介绍 分析模型文件 mean值查看 Weight和Bias查看 读取代码 读取模型 训练代码 参考资料 VGG-19的介绍和训练这里不做说明,网上资 ...
- 机器学习使用sklearn进行模型训练、预测和评价
cross_val_score(model_name, x_samples, y_labels, cv=k) 作用:验证某个模型在某个训练集上的稳定性,输出k个预测精度. K折交叉验证(k-fold) ...
- 谷歌大规模机器学习:模型训练、特征工程和算法选择 (32PPT下载)
本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A 谷歌大规模机器学习:模型训练.特征工程和算法选择 (32PPT下载) 2017-01-26 ...
- facenet模型训练
做下记录,脚本如下: 对比 python3 src/compare.py ../models/-/ ../faces/pyimgs/dashenlin/ytwRkvSdG1000058.png ../ ...
- 人脸检测及识别python实现系列(3)——为模型训练准备人脸数据
人脸检测及识别python实现系列(3)——为模型训练准备人脸数据 机器学习最本质的地方就是基于海量数据统计的学习,说白了,机器学习其实就是在模拟人类儿童的学习行为.举一个简单的例子,成年人并没有主动 ...
- 【机器学习PAI实践十】深度学习Caffe框架实现图像分类的模型训练
背景 我们在之前的文章中介绍过如何通过PAI内置的TensorFlow框架实验基于Cifar10的图像分类,文章链接:https://yq.aliyun.com/articles/72841.使用Te ...
- kaldi基于GMM的单音素模型 训练部分
目录 1. gmm-init-mono 模型初始化 2. compile-train-graghs 训练图初始化 3. align-equal-compiled 特征文件均匀分割 4. gmm-acc ...
随机推荐
- 简单理解JavaScript原型链
简单理解原型链 什么是原型 ? 我是这样理解的:每一个JavaScript对象在创建的时候就会与之关联另外一个特殊的对象,这个对象就是我们常说的原型对象,每一个对象都会从原型"继承" ...
- ubuntu修改密码
ubuntu修改密码 本文链接:https://blog.csdn.net/heybob/article/details/9095727 修改root密码: 1,$sudo su,输入密码进入root ...
- CentOS7.9防火墙命令
CentOS7防火墙命令有变化: CentOS7: systemctl status firewalld.service 查看防火墙状态 systemctl stop firewalld. ...
- GRIT VIEW删除事件
1.点选表格后找到事件 RowCommand 2.輸入gvGroupUser_RowCommand后双击 ------注分 ...
- C#导入Excel表格功能aspx.cs(代码)
using System; using System.Data; using System.Configuration; using System.Collections; using System. ...
- C++开源库大全
标准库 C++ Standard Library:是一系列类和函数的集合,使用核心语言编写,也是C++ISO自身标准的一部分. Standard Template Library:标准模板库 ...
- win7用驱动精灵安装了bcm94352ac蓝牙驱动后还是不能用蓝牙的解决方法
驱动精灵安装了驱动后,设备管理器处显示Bluetooth USB,但是没法用蓝牙,找不到蓝牙图标,后来在华硕官方下载了win7的Broadcom 蓝牙驱动程序装上之后就好了
- Sharding-JDBC介绍
Sharding-JDBC是当当应用框架ddframe中,从关系型数据库模块dd-rdb中分离出来的数据库水平分片框架,实现透明化数据库分库分表访问.Sharding-JDBC是继dubbox和ela ...
- Django中生成随机验证码(pillow模块的使用)
Django中生成随机验证码 1.html中a标签的设置 <img src="/get_validcode_img/" alt=""> 2.view ...
- Java 之 反射机制
反射:框架设计的灵魂 框架:是一个可以供我们使用的半成品软件.可以在框架的基础上进行软件开发,简化编码. 反射:将类的各个组成部分封装为其他对象,这就是反射机制. 好处: 1. 可以在程序运行过程中, ...