感觉很多树上难以直接求解的问题都可以转化为动态规划问题并进行求解$.$
令 $f[x],g[x]$ 分别表示以 $x$ 为根的子树不想上延申,向上延申的方案数$.$
这里向上延申指的是会有其他子树的节点与该点子树中某个点颜色相同并进行配对$.$
考虑转移:
$f[x]=g[x]=\prod_{v\in son[x]} (f[v]+g[v]).$
然而,我们还要减掉一些不合法的.
令 $v'$ 表示我们当前枚举到的儿子.
先考虑 $f[x]:$
首先,$x$ 儿子中不可能只有一个延申:$f[x]$ 已经表示在 $x$ 终止了,而只有一个延申的话不能在 $x$ 终止.
所以,$f[x]=\prod_{v\in son[x]} (f[v]+g[v])-\frac{\prod_{v\in son[x]}f[v]}{f[v']}\times g[v'].$
而 $g[x]$ 中不能出现一个都不延申的情况,即 $g[x]=\prod_{v\in son[x]} (f[v]+g[v])-\prod_{v\in son[x]}f[v].$

#include <cstdio>
#include <algorithm>
#define N 200005
#define mod 998244353
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
ll qpow(ll base,ll k)
{
ll tmp=1;
for(;k;base=base*base%mod,k>>=1) if(k&1) tmp=tmp*base%mod;
return tmp;
}
ll inv(ll k)
{
return qpow(k,mod-2);
}
int n,edges;
ll f[N],g[N];
int hd[N],to[N],nex[N],size[N];
void add(int u,int v)
{
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;
}
void dfs(int u)
{
int i;
size[u]=1;
ll sum=1;
f[u]=g[u]=1;
for(i=hd[u];i;i=nex[i])
{
int v=to[i];
dfs(v);
size[u]+=size[v];
sum=sum*f[v]%mod;
f[u]=f[u]*((f[v]+g[v])%mod)%mod;
}
g[u]=f[u];
if(size[u]>1)
{
g[u]=(g[u]+mod-sum)%mod;
for(i=hd[u];i;i=nex[i])
{
int v=to[i];
ll tmp=inv(f[v])*g[v]%mod;
tmp=tmp*sum%mod;
f[u]=(f[u]+mod-tmp)%mod;
}
}
}
int main()
{
int i,j;
// setIO("input");
scanf("%d",&n);
for(i=2;i<=n;++i)
{
int a;
scanf("%d",&a),add(a,i);
}
dfs(1);
printf("%lld\n",f[1]);
return 0;
}

  

CF1146F Leaf Partition 树形DP的更多相关文章

  1. HDU 5682 zxa and leaf 二分 树形dp

    zxa and leaf 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5682 Description zxa have an unrooted t ...

  2. 洛谷P4438 道路 [HNOI/AHOI2018] 树形dp

    正解:树形dp 解题报告: 传送门! 昂首先看懂题目趴QwQ大概就是说有棵满二叉树,有n个叶子节点(乡村)和n-1个非叶子节点,然后这棵树的每个节点有三个属性abc,对每个非叶子节点可以从与子节点的两 ...

  3. [JLOI2015]战争调度【暴力+树形Dp】

    Online Judge:Bzoj4007,Luogu P3262 Label:暴力,树形Dp 题解 参考了这篇blog https://www.cnblogs.com/GXZlegend/p/830 ...

  4. [CQOI2009]叶子的染色【性质+树形Dp】

    Online Judge:Bzoj1304,Luogu P3155 Label:无根树,树形Dp 题目描述 给定一棵\(N\)个节点的无根树,它一共有\(K\)个叶子节点.你可以选择一个度数大于1的节 ...

  5. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  6. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

  7. 【BZOJ-4726】Sabota? 树形DP

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved ...

  8. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

  9. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

随机推荐

  1. Minimum Cut(2015沈阳online)【贪心】

    Minimum Cut[贪心]2015沈阳online 题意:割最少的边使得图不连通,并且割掉的边中有且仅有一条是生成树的边. 首先,我们选择一条树中的边进行切割,此时仅考虑树上的边集,有两种情况:1 ...

  2. 小白windows上搭建linux环境

    我使用的oracle VM VirtualBox,下载使用就好了 这是用的虚拟机,不是搭建linux系统,不用担心把电脑搞坏,游戏打不了 全程很简单,基本都是默认,下一步 下一步 默认下一步 创建 下 ...

  3. 从入门到自闭之Python--Redis

    什么是Redis Redis是由意大利人Salvatore Sanfilippo(网名:antirez)开发的一款内存高速缓存数据库.Redis全称为:Remote Dictionary Server ...

  4. Spring实战(十二) Spring中注入AspectJ切面

    1.Spring AOP与AspectJ Spring AOP与AspectJ相比,是一个功能比较弱的AOP解决方案. AspectJ提供了许多它不能支持的类型切点,如在创建对象时应用通知,构造器切点 ...

  5. sql lesson21homework

    2017-08-15 18:03:17 mysql> show databases;+--------------------+| Database           |+---------- ...

  6. Pycharm有必要改的几个默认设置项以及快捷键

    最近在用Pycharm学习Python的时候,总有两个地方感觉不是很舒服,比如调用方法的时候区分大小写(thread就不会出现Thread,string就不会出现String)等,这让我稍稍有点不舒服 ...

  7. JDBC:JAVA & Oracle

    JDBC:JAVA & Oracle 本文中未加标注的资源均来自于PolyU数据库课程的实验材料.仅作为学习使用,如有侵权,请联系删除 JDBC是什么 我之前写过一篇关于数据库和JAVA的博文 ...

  8. Express bodyParser中间件使用方式

    bodyParser中间件用来解析http请求体,是express默认使用的中间件之一. 1.这个模块提供以下解析器 (1) JSON body parser (2) Raw body parser ...

  9. mybatis抛出异常(java.sql.SQLException: Incorrect string value: '\xF0\x9F\x92\x94' for column 'name' at row 1)

    文章参考 https://blog.csdn.net/junsure2012/article/details/42171035 https://www.cnblogs.com/WangYunShuai ...

  10. 密码基础知识(2)以RSA为例说明加密、解密、签名、验签

    密码基础知识(1)https://www.cnblogs.com/xdyixia/p/11528572.html 一.RSA加密简介 RSA加密是一种非对称加密.是由一对密钥来进行加解密的过程,分别称 ...