CF1146F Leaf Partition 树形DP
感觉很多树上难以直接求解的问题都可以转化为动态规划问题并进行求解$.$
令 $f[x],g[x]$ 分别表示以 $x$ 为根的子树不想上延申,向上延申的方案数$.$
这里向上延申指的是会有其他子树的节点与该点子树中某个点颜色相同并进行配对$.$
考虑转移:
$f[x]=g[x]=\prod_{v\in son[x]} (f[v]+g[v]).$
然而,我们还要减掉一些不合法的.
令 $v'$ 表示我们当前枚举到的儿子.
先考虑 $f[x]:$
首先,$x$ 儿子中不可能只有一个延申:$f[x]$ 已经表示在 $x$ 终止了,而只有一个延申的话不能在 $x$ 终止.
所以,$f[x]=\prod_{v\in son[x]} (f[v]+g[v])-\frac{\prod_{v\in son[x]}f[v]}{f[v']}\times g[v'].$
而 $g[x]$ 中不能出现一个都不延申的情况,即 $g[x]=\prod_{v\in son[x]} (f[v]+g[v])-\prod_{v\in son[x]}f[v].$
#include <cstdio>
#include <algorithm>
#define N 200005
#define mod 998244353
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
ll qpow(ll base,ll k)
{
ll tmp=1;
for(;k;base=base*base%mod,k>>=1) if(k&1) tmp=tmp*base%mod;
return tmp;
}
ll inv(ll k)
{
return qpow(k,mod-2);
}
int n,edges;
ll f[N],g[N];
int hd[N],to[N],nex[N],size[N];
void add(int u,int v)
{
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;
}
void dfs(int u)
{
int i;
size[u]=1;
ll sum=1;
f[u]=g[u]=1;
for(i=hd[u];i;i=nex[i])
{
int v=to[i];
dfs(v);
size[u]+=size[v];
sum=sum*f[v]%mod;
f[u]=f[u]*((f[v]+g[v])%mod)%mod;
}
g[u]=f[u];
if(size[u]>1)
{
g[u]=(g[u]+mod-sum)%mod;
for(i=hd[u];i;i=nex[i])
{
int v=to[i];
ll tmp=inv(f[v])*g[v]%mod;
tmp=tmp*sum%mod;
f[u]=(f[u]+mod-tmp)%mod;
}
}
}
int main()
{
int i,j;
// setIO("input");
scanf("%d",&n);
for(i=2;i<=n;++i)
{
int a;
scanf("%d",&a),add(a,i);
}
dfs(1);
printf("%lld\n",f[1]);
return 0;
}
CF1146F Leaf Partition 树形DP的更多相关文章
- HDU 5682 zxa and leaf 二分 树形dp
zxa and leaf 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5682 Description zxa have an unrooted t ...
- 洛谷P4438 道路 [HNOI/AHOI2018] 树形dp
正解:树形dp 解题报告: 传送门! 昂首先看懂题目趴QwQ大概就是说有棵满二叉树,有n个叶子节点(乡村)和n-1个非叶子节点,然后这棵树的每个节点有三个属性abc,对每个非叶子节点可以从与子节点的两 ...
- [JLOI2015]战争调度【暴力+树形Dp】
Online Judge:Bzoj4007,Luogu P3262 Label:暴力,树形Dp 题解 参考了这篇blog https://www.cnblogs.com/GXZlegend/p/830 ...
- [CQOI2009]叶子的染色【性质+树形Dp】
Online Judge:Bzoj1304,Luogu P3155 Label:无根树,树形Dp 题目描述 给定一棵\(N\)个节点的无根树,它一共有\(K\)个叶子节点.你可以选择一个度数大于1的节 ...
- poj3417 LCA + 树形dp
Network Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4478 Accepted: 1292 Descripti ...
- COGS 2532. [HZOI 2016]树之美 树形dp
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...
- 【BZOJ-4726】Sabota? 树形DP
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 128 Solved ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
- 树形DP
切题ing!!!!! HDU 2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...
随机推荐
- 并不对劲的复健训练-CF1187D
题目大意 有两个长度为\(n\)的序列\(a_1,...,a_n\),\(b_1,...,b_n\)(\(a,b\leq n\leq 3\times 10^5\) ).一次操作是选取 \([l,r]\ ...
- Java IO与NIO的总结、比较
一.IO流总结 1.Java I/O主要包括如下3层次: 流式部分——最主要的部分.如:OutputStream.InputStream.Writer.Reader等 非流式部分——如:File类.R ...
- Leaflet个人封装笔记
<!DOCTYPE html> <html> <head> <link href="style/leaflet.css" type=&qu ...
- layer插件loading快速应用示例
1.页面引用<link rel="stylesheet" href="../Js/layer/skin/layer.css" /><scri ...
- 【opencv源码解析】 二、 cvtColor
这里以CV_BGR2YUV_I420来讲 1. opencv244 core.cpp void cv::cvtColor( InputArray _src, OutputArray _dst, int ...
- 前后端分离-模拟数据之RAP2快速入门
是啥? RAP是一个可视化接口管理工具 通过分析接口结构,动态生成模拟数据,校验真实接口正确性, 围绕接口定义,通过一系列自动化工具提升我们的协作效率.我们的口号:提高效率,回家吃晚饭! 可视化编辑, ...
- linux环境下,springboot jar启动方式
linux环境下,springboot jar启动方式 一.前台启动(ctrl+c会关掉进程) java -jar application.jar 二.后台启动(ctrl+c不会关闭) java -j ...
- zabbix 邮件报警(五)
一.sendEmail配置zabbix邮件报警 1.下载sendEmail: wget http://caspian.dotconf.net/menu/Software/SendEmail/sendE ...
- 检测udp端口
linux 检测端口是否打开:nc -zuv ip 端口 服务器监听端口:nc -l -u ip 端口(可以发送和接受信息) 客户端检测端口:nc -u ip 端口(可以发送和接受信息) 查看监听的t ...
- npm run build后如何打开index.html跑起项目
Tip: built files are meant to be served over an HTTP server. Opening index.html over file:// won't ...