梯度下降法就是沿梯度下降的方向求解函数(误差)极小值。delta法则是使用梯度下降法来找到最佳权向量。拿数字识别这个案例为例,训练模型的过程通常是这样的。输入为1万张图片,也就是1万个样本,我们定义为D,是训练样例集合,输出为相对应的1万个数字。这就是1万个目标输出(Target),每一个目标输出我们定义为:td ,是训练样例d的目标输出。我们的模型训练的目的是想找出,此人工神经网络模型的参数,比如权向量w等。要注意,目标输出td是已知的(非变量,比如5这张图,目标输出就是5这个数字),样本也是已知的。参数是未知的。还有什么是未知的?这就需要从训练的过程入手了。训练过程,通常开始时,所有的权向量w都从一个很小的值开始,比如零,这时有一个实际输出(od是对训练样例d的实际输出)。目标输出和实际输出的差距叫做误差。因为一共有1万个样本,为了消除正负误差相抵,所以我们定义所有目标输出和实际输出的误差平方和的一半为E。(因为平方的求导会出现2,所以这就是取一半的原因,这样2×(1/2)会使系数消失。)

拿我们这章第一个例子,单个神经元的房子预测神经网络模型为例,不难理解:Od=x0*w0+x1*w1+…xn*wn+b,结合前面的分析可知,x0,x1,。。。。。xn都是一个个的样本值, 是已知的。td也是已知的。这样看E是w0,w1,....wn和b的函数。我们的目标就是找到一组权向量(w0,w1,....wn和b)能使E最小化。拿wi来说,我们可以画一条函数曲线:。。。。。。。。。。。。。。。。。。。

文章转载自原文:https://blog.csdn.net/qq_44639795/article/details/100599848

什么是梯度下降法与delta法则?的更多相关文章

  1. 梯度下降法原理与python实现

    梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离 ...

  2. matlib实现梯度下降法

    样本文件下载:ex2Data.zip ex2x.dat文件中是一些2-8岁孩子的年龄. ex2y.dat文件中是这些孩子相对应的体重. 我们尝试用批量梯度下降法,随机梯度下降法和小批量梯度下降法来对这 ...

  3. 【math】梯度下降法(梯度下降法,牛顿法,高斯牛顿法,Levenberg-Marquardt算法)

    原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何为梯度? 一般解释: f(x)在x0的梯度:就是f(x)变化最快的方向 举个例子 ...

  4. 『科学计算_理论』优化算法:梯度下降法&牛顿法

    梯度下降法 梯度下降法用来求解目标函数的极值.这个极值是给定模型给定数据之后在参数空间中搜索找到的.迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步 ...

  5. [机器学习] ML重要概念:梯度(Gradient)与梯度下降法(Gradient Descent)

    引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课 ...

  6. 梯度下降法&牛顿法

    梯度下降法 在机器学习任务中,需要最小化损失函数\(L(\theta)\),其中\(\theta\)是要求解的模型参数.梯度下降法是一种迭代方法,用到损失函数的一阶泰勒展开.选取初值\(\theta ...

  7. (3)梯度下降法Gradient Descent

    梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向, ...

  8. 机器学习中梯度下降法原理及用其解决线性回归问题的C语言实现

    本文讲梯度下降(Gradient Descent)前先看看利用梯度下降法进行监督学习(例如分类.回归等)的一般步骤: 1, 定义损失函数(Loss Function) 2, 信息流forward pr ...

  9. 梯度下降法及一元线性回归的python实现

    梯度下降法及一元线性回归的python实现 一.梯度下降法形象解释 设想我们处在一座山的半山腰的位置,现在我们需要找到一条最快的下山路径,请问应该怎么走?根据生活经验,我们会用一种十分贪心的策略,即在 ...

随机推荐

  1. 再论i++ ++i

    #include <stdio.h> int main(void) { char acData[5] ={'A','B','C','D','E'}; char *pcData = NULL ...

  2. 【题解】Mountain Walking-C++

    题目题意翻译题意简述:现在给一个N*N的矩阵,找一条路径从左上角走到右下角,每次可以向上下左右四个方向中某个方向走.要求走过的点中,数字最大的减去最小的.要求值越小越好.现在就是要求这个值. 输入格式 ...

  3. ue/um-editor实现word图片复制

    图片的复制无非有两种方法,一种是图片直接上传到服务器,另外一种转换成二进制流的base64码 目前限chrome浏览器使用,但是项目要求需要支持所有的浏览器,包括Windows和macOS系统.没有办 ...

  4. stark项目流程

    1 创建Django项目 2 创建app python manage.py startapp app名 3 文件配置 app配置 静态文件配置 创建文件夹,下载bootstrap,jquery 归档文 ...

  5. 【概率论】4-2:期望的性质(Properties of Expectation)

    title: [概率论]4-2:期望的性质(Properties of Expectation) categories: - Mathematic - Probability keywords: - ...

  6. Luogu5298 [PKUWC2018]Minimax

    太久没写博客了,过来水一发. 题目链接:洛谷 首先我们想到,考虑每个叶节点的权值为根节点权值的概率.首先要将叶节点权值离散化. 假设现在是$x$节点,令$f_i,g_i$分别表示左/右节点的权值$=i ...

  7. Linux之文件通信

    /* * 后执行,尝试读取另外一个进程写入文件的内容 */ #include <stdio.h> #include <unistd.h> #include <stdlib ...

  8. overflow妙用--去除默认滚动条,内容仍可滚动

    在开发中我们往往要去除默认滚动条,但是其在竖直方向的滚动效果仍然需要. <div id="parent"> <div id="child"&g ...

  9. 2015-2016 ACM ICPC Baltic Selection Contest

    这是上礼拜三的训练赛,以前做过一次,这次仅剩B题没补.题目链接:https://vjudge.net/contest/153192#overview. A题,水题. C题,树形DP,其实是一个贪心问题 ...

  10. Python经典练习题1:一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少?

    Python经典练习题 网上能够搜得到的答案为: for i in range(1,85): if 168 % i == 0: j = 168 / i; if i > j and (i + j) ...