【ARC072 E】Alice in linear land
被智商题劝退,告辞
题意
有一个人在一条数轴的距离原点为 \(D\) 的位置,他可以执行 \(n\) 次操作,每次操作为给定一个整数 \(d_i\),这个人向原点的方向走 \(d_i\) 个单位,但如果走 \(d_i\) 个单位后他离原点的距离更远了,他就不会执行这个操作。
有 \(q\) 次询问,每次询问给定一个 \(y\),询问能否将 \(d_y\) 修改为 \([0,\infty)\) 内的整数(注意可以改成 \(0\)),使得这个人执行 \(n\) 次操作后到不了原点。询问之间互相独立,即每次单点修改都是在原序列的基础上修改。
\(n\le 5\times 10^5\)
\(1\le d_i,D\le 10^9\)
题解
预处理出 \(y=1\cdots n\) 的答案。
考虑单点修改的实质:设 \(sum_i\) 表示执行完前 \(i-1\) 次操作后人的位置,询问是否存在一个到原点距离为 \(d_i\in [0,sum_{i-1}]\) 的整点,使得从该点出发进行第 \(i+1\) 到 \(n\) 次操作后这个人到不了终点。
因为本题的操作带条件,所以不能修改中间的某个操作。
但是我们可以预处理出 \(b_i\) 表示执行第 \(i\) 到 \(n\) 个操作后到达原点的最大出发位置(即到原点距离最远的位置)。
显然,答案是 yes 当且仅当 \(a_{y-1}\gt b_{y+1}\)(因为做一次操作只会使人到原点的距离变小或不变)。
那怎么预处理 \(b_i\) 呢?
构造一个函数 \(f(i)\) 表示人从距离原点为 \(i\) 的位置出发,执行一个参数为 \(k\) 的操作,到达距离原点 \(f(i)\) 的位置。
\(k\) 任取一个数 \(9\),则把函数 \(f\) 打表
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | \(\cdots\)
-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|
y | 1 | 2 | 3 | 4 | 4 | 3 | 2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | \(\cdots\)
搬用官方题解的 \(x,y\) 图象(横轴是 \(x\),纵轴是 \(y\))

但我们可以通过修改 \(d_i\) 来得到 \([0,sum_{i-1}]\) 中的任意整数,所以我们把整个区间 \([0,i]\) 作为一个新函数 \(F\) 的自变量,\(F(i)\) 表示人从一个可能位于的区间 \([0,i]\) 出发,执行一个参数为 \(k\) 的操作,能到达的区间为 \([0,F(i)]\)。显然,\(F(i)\le i\),即人可能位于的区间随着操作的增加而缩小。
这里写一下 \(F(i)\) 的等式:\(F(i)=\min(i,\max(i-k,\lfloor \frac{k}{2}\rfloor))\)
观察定义,还可以发现 \(F(i)\) 实际上就是 \(\max(f(j)\space |\space j\in [1,i])\)。
依然取 \(k\) 为 \(9\),把函数 \(F\) 打表
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | \(\cdots\)
-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|
y | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | \(\cdots\)
因为 \(b_{n+1}=0\),所以 \(b\) 数组可以倒推。现在我们考虑从某一个区间撤回一次操作所返回的区间。
设 \(F\) 的逆函数 \(G(i)\) 表示人从一个可能位于的区间 \([0,i]\) 撤回一个参数为 \(k\) 的操作,能到达的最大区间(因为我们要求 \(b_i\) 是合法的最大出发位置)。
观察函数 \(F\) 的表可得 $$G(i) = \begin{cases} i &(i\le \lfloor\frac{k}{2}\rfloor) \ i+k &(i\gt \lfloor\frac{k}{2}\rfloor) \end{cases}$$
于是倒推出 \(b\) 数组即可,根据 \(a_{y-1}\gt b_{y+1}\) 判断 yes / no 就行了。
复杂度 \(O(n)\)。
#include<bits/stdc++.h>
#define ll long long
#define N 500005
using namespace std;
inline ll read(){
ll x=0; bool f=1; char c=getchar();
for(;!isdigit(c); c=getchar()) if(c=='-') f=0;
for(; isdigit(c); c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return 0-x;
}
int n,q;
ll a[N+3],s[N+3],lim[N+3];
int main(){
n=read(), s[0]=read();
for(int i=1; i<=n; i++){
a[i]=read();
s[i]=min(abs(s[i-1]-a[i]),s[i-1]);
}
lim[n+1]=0;
for(int i=n; i>=1; i--){
if(lim[i+1]>=a[i]/2) lim[i]=lim[i+1]+a[i];
else lim[i]=lim[i+1];
}
q=read(); int x;
while(q--) x=read(), puts(lim[x+1]<s[x-1]?"YES":"NO");
return 0;
}
【ARC072 E】Alice in linear land的更多相关文章
- 【ARC072E】Alice in linear land DP
题目大意 有一个人要去直线上\(lm\)远处的地方,他会依次给他的机器发出\(n\)个指令.第\(i\)个指令为\(d_i\).他的机器收到一个指令\(x\)后,如果向目的地方向前进\(xm\)后比当 ...
- 【ARC072E】Alice in linear land
题目 瑟瑟发抖,这竟然只是个蓝题 题意大概就是初始在\(0\),要到坐标为\(D\)的地方去,有\(n\)条指令,第\(i\)条为\(d_i\).当收到一条指令\(x\)后,如果向\(D\)方向走\( ...
- 【arc072e】AtCoder Regular Contest 072 E - Alice in linear land
题意 给定一个D,以及一个长度为N的序列a,顺序执行这些数字: 对于一个数字x,会使得D=min(D,abs(D-x)) 有Q次询问,每次询问独立,给出i,能否修改a[i],使得D最后不为0. n,q ...
- [AT2401] [arc072_e] Alice in linear land
题目链接 AtCoder:https://arc072.contest.atcoder.jp/tasks/arc072_c 洛谷:https://www.luogu.org/problemnew/sh ...
- ARC072E Alice in linear land
---题面--- 题解: 首先我们要观察到一个性质,因为在固定的起始距离下,经过固定的操作,最后所在的位置是固定的,我们设经过操作1 ~ i之后所在的地方距离终点为d[i]. 那么如果女巫可以修改第i ...
- AtCoder Regular Contest 072 E:Alice in linear land
题目传送门:https://arc072.contest.atcoder.jp/tasks/arc072_c 题目翻译 给你一个数组\(D\),然后给你一个操作序列\(d\),每次操作可以将\(D\) ...
- 【深度学习】线性回归(Linear Regression)——原理、均方损失、小批量随机梯度下降
1. 线性回归 回归(regression)问题指一类为一个或多个自变量与因变量之间关系建模的方法,通常用来表示输入和输出之间的关系. 机器学习领域中多数问题都与预测相关,当我们想预测一个数值时,就会 ...
- 【POJ 1698】Alice's Chance(二分图多重匹配)
http://poj.org/problem?id=1698 电影和日子匹配,电影可以匹配多个日子. 最多有maxw*7个日子. 二分图多重匹配完,检查一下是否每个电影都匹配了要求的日子那么多. #i ...
- Atcoder Regular Contest 072 C - Alice in linear land(思维题)
Atcoder 题面传送门 & 洛谷题面传送门 首先求出 \(s_i\) 表示经过 \(i\) 次操作后机器人会位于什么位置,显然 \(s_0=D\),\(s_i=\min(s_{i-1},| ...
随机推荐
- 想了解Java后端学习路线?你只需要这一张图!
前言 学习路线图往往是学习一样技术的入门指南.网上搜到的Java学习路线图也是一抓一大把. 今天我只选一张图,仅此一图,足以包罗Java后端技术的知识点.所谓不求最好,但求最全,学习Java后端的同学 ...
- 安装zabbix4.0 LTS
一.环境准备 1.https://www.zabbix.com/download?zabbix=4.4&os_distribution=centos&os_version=7& ...
- 论文阅读 | Adversarial Example Generation with Syntactically Controlled Paraphrase Networks
[pdf] [code] 句法控制释义网络 SCPNS 生成对抗样本 我们提出了句法控制意译网络(SCPNs),并利用它们来生成对抗性的例子.给定一个句子和一个目标语法形式(例如,一个选区解析),s ...
- PYTHON 100days学习笔记006:函数和模块的使用
目录 Day006:函数和模块的使用 1.函数的作用 2.定义函数 2.1 语法 2.2 实例 2.3 函数的调用 4.函数的参数 4.1 必须参数 4.2 关键字参数 4.3 默认参数 4.4 不定 ...
- PHP中的闭包
1.语句结构 在PHP中,由于存在函数内部不能访问全局作用的,所以就需要一种可以引入上一级作用域的语法结构,这种就是 function () use () {} 将需要引入到这个函数作用于内的变量写入 ...
- 内网和wifi同时存在
1.注意都要用管理员身份运行 2.将以下代码编写为.bat文件,然后以管理员身份运行此文件 route delete 0.0.0.0 route delete 10.10.0.0 route dele ...
- 经验:什么影响了数据库查询速度、什么影响了MySQL性能 (转)
一.什么影响了数据库查询速度 1.1 影响数据库查询速度的四个因素 1.2 风险分析 QPS:Queries Per Second意思是“每秒查询率”,是一台服务器每秒能够相应的查询次数,是对一个特定 ...
- Docker结合Jenkins构建持续集成环境
1.环境说明: jenkins+svn:192.168.71.142 测试环境:192.168.71.145 生产环境:192.168.71.148 操作系统:centos7. Maven3. Tom ...
- [经验分享] Docker网络解决方案-Weave部署记录
前面说到了Flannel的部署,今天这里说下Docker跨主机容器间网络通信的另一个工具Weave的使用.当容器分布在多个不同的主机上时,这些容器之间的相互通信变得复杂起来.容器在不同主机之间都使用的 ...
- 在Global.asax中 注册Application_Error事件 捕获全局异常
参考于:https://shiyousan.com/post/635813858052755170 在ASP.NET MVC中,通过应用程序生命周期中的Application_Error事件可以捕获到 ...