8.1 Linear Requires

Keys:

  1. A linear transformation T takes vectors v to vectors T(v). Linearity requires:

    \[T(cv +dw) = cT(v) + dT(w)
    \]
  2. The input vectors v and outputs T(v) can be in \(R^n\) or matrix space or function space.

  3. If A is m by n, \(T(x)=Ax\) is linear from the input space \(R^n\) to the output space \(R^m\).

  4. The derivative \(T(f)=\frac{df}{dx}\) is linear.The integral \(T^+(f)=\int^x_0f(t)dt\) is its pseudoinverse.

    Derivative: \(1,x,x^2 \rightarrow 1,x\)

    \[u = a + bx + cx^2 \\
    \Downarrow \\
    Au = \left [ \begin{matrix} 0&1&0 \\ 0&0&2 \end{matrix} \right]
    \left [ \begin{matrix} a \\ b \\ c \end{matrix} \right]
    =\left [ \begin{matrix} b \\ 2c \end{matrix} \right] \\
    \Downarrow \\
    \frac{du}{dx} = b + 2cx
    \]

    Integration: \(1,x \rightarrow x,x^2\)

    \[\int^x_0(D+Ex)dx= Dx + \frac{1}{2}Ex^2 \\
    \Downarrow \\
    input \ \ v \ \ (D+Ex) \\
    A^+v = \left[ \begin{matrix} 0&0 \\ 1&0 \\ 0&\frac{1}{2} \end{matrix} \right]
    \left[ \begin{matrix} D \\ E \end{matrix} \right]
    =\left[ \begin{matrix} 0 \\D \\ \frac{1}{2}E \end{matrix} \right] \\
    \Downarrow \\
    T^+(v) = Dx + \frac{1}{2}Ex^2
    \]
  5. The product ST of two linear transformations is still linear : \((ST)(v)=S(T(v))\)

  6. Linear : rotated or stretched or other linear transformations.

8.2 Matrix instead of Linear Transformation

We can assign a matrix A to instead of every linear transformation T.

For ordinary column vectors, the input v is in \(V=R^n\) and the output \(T(v)\) is in \(W=R^m\), The matrix A for this transformation will be m by n.Our choice of bases in V and W will decide A.

8.2.1 Change of Basis

if \(T(v) = v\) means T is the identiy transformation.

  1. If input bases = output bases, then the matrix \(I\) will be choosed.

  2. If input bases not equal to output bases, then we can construct new matrix \(B=W^{-1}V\).

    example:

    \[input \ \ basis \ \ [v_1 \ \ v_2] = \left [ \begin{matrix} 3&6 \\ 3&8 \end{matrix} \right] \\
    output \ \ basis \ \ [w_1 \ \ w_2] = \left [ \begin{matrix} 3&0 \\ 1&2 \end{matrix} \right] \\
    \Downarrow \\
    v_1 = 1w_1 + 1w_2 \\
    v_2 = 2w_1 + 3w_2 \\
    \Downarrow \\
    [w_1 \ \ w_2] [B] = [v_1 \ \ v_2] \\
    \Downarrow \\
    \left [ \begin{matrix} 3&0 \\ 1&2 \end{matrix} \right]
    \left [ \begin{matrix} 1&2 \\ 1&3 \end{matrix} \right]
    =
    \left [ \begin{matrix} 3&6 \\ 3&8 \end{matrix} \right]
    \]

    when the input basis is in the columns of V, and the output basis is in the columns of W, the change of basis matrix for \(T\) is \(B=W^{-1}V\).

    Suppose the same vector u is written in input basis of v's and output basis of w's:

    \[u=c_1v_1 + \cdots + c_nv_n \\
    u=d_1w_1 + \cdots + d_nw_n \\
    \left [ \begin{matrix} v_1 \cdots v_n \end{matrix} \right]
    \left [ \begin{matrix} c_1 \\ \vdots \\ c_n \end{matrix} \right]
    =
    \left [ \begin{matrix} w_1 \cdots w_n \end{matrix} \right]
    \left [ \begin{matrix} d_1 \\ \vdots \\ d_n \end{matrix} \right]
    \\
    Vc=Wd \\
    d = W^{-1}Vc = Bc \\
    \]

    c is coordinates of input basis, d is coordinates of output basis.

8.2.2 Construction Matrix

Suppose T transforms the space V to space W. We choose a basis \(v_1,v_2,...,v_n\) for V and a basis \(w_1,w_2,...,w_n\) for W.

\[T(v_j) = combination \ \ of \ \ output \ \ basis \ \ vectors \\
=a_{1j}w_1 + \cdots + a_{mj}w_m
\]

The \(a_{ij}\) are into A.

\[v = c_1 + c_2x + c_3x^2 + c_4x^3 \\
T(v) =\frac{dv}{dx} = 1c_2 + 2c_3x + 3c_4x^2 \\
Ac=\left[ \begin{matrix} 0&1&0&0 \\ 0&0&2&0\\ 0&0&0&3 \end{matrix} \right]
\left[ \begin{matrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{matrix} \right]
=\left[ \begin{matrix} c_2 \\ 2c_3 \\ 3c_4 \end{matrix} \right]
\]

T takes the derivative, A is "derivative matrix".

8.2.3 Choosing the Best Bases

The same T is represented by different matrices when we choose different bases.

Perfect basis

Eigenvectors are the perfect basis vectors.They produce the eigenvalues matrix \(\Lambda = X^{-1}AX\)

Input basis = output basis

The new basis of b's is similar to A in the standard basis:

\[A_{b's \ \ to \ \ b's} = B^{-1}_{standard \ \ to \ \ b's} A_{standard} B^{-1}_{b's \ \ to \ \ strandard}
\]

Different basis

Probably A is not symmetric or even square, we can choose the right singular vectors (\(v_1,...,v_n\)) as input basis and the left singular vectors(\(u_1,...,u_n\)) as output basis.

\[B_{out}^{-1}AB_{in} = U^{-1}AV=\Sigma \ \ (singular \ \ values)
\]

\(\Sigma\) is "isometric" to A.

Definition : \(C=Q^{-1}_1AQ_{2}\) is isometric to A if \(Q_1\) and \(Q_2\) are orthogonal.

8.2.4 The Search of a Good Basis

Keys: fast and few basis.

  1. $B_{in} = B_{out} = $ eigenvector matrix X . Then \(X^{-1}AX\)= eigenvalues in \(\Lambda\).
  2. $B_{in} = V \ , \ B_{out} = U $ : singular vectors of A. Then \(U^{-1}AV\)= singular values in \(\Sigma\).
  3. $B_{in} = B_{out} = $ generalized eigenvectors of A . Then \(B^{-1}AB\)= Jordan form \(J\).
  4. $B_{in} = B_{out} = $ Fourier matrix F . Then \(Fx\) is a Discrete Fourier Transform of x.
  5. The Fourier basis : \(1,sinx,cosx,sin2x,cos2x,...\)
  6. The Legendre basis : \(1, x, x^2 - \frac{1}{3},x^3 - \frac{3}{5},...\)
  7. The Chebyshev basis : \(1, x, 2x^2 - 1,4x^3 - 3x,...\)
  8. The Wavelet basis.

8. Linear Transformations的更多相关文章

  1. Linear transformations. 线性变换与矩阵的关系

    0.2.2 Linear transformations. Let U be an n-dimensional vector space and let V be an m-dimensional v ...

  2. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  3. transformations 变换集合关系 仿射变换

    http://groups.csail.mit.edu/graphics/classes/6.837/F03/lectures/04_transformations.ppt https://group ...

  4. paper 128:奇异值分解(SVD) --- 线性变换几何意义[转]

    PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真 ...

  5. 特征向量-Eigenvalues_and_eigenvectors#Graphs

    https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Graphs A               {\displaystyle A} ...

  6. 转载:奇异值分解(SVD) --- 线性变换几何意义(上)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  7. (转) Deep Learning in a Nutshell: Core Concepts

    Deep Learning in a Nutshell: Core Concepts Share:   Posted on November 3, 2015by Tim Dettmers 7 Comm ...

  8. We Recommend a Singular Value Decomposition

    We Recommend a Singular Value Decomposition Introduction The topic of this article, the singular val ...

  9. A geometric interpretation of the covariance matrix

    A geometric interpretation of the covariance matrix Contents [hide] 1 Introduction 2 Eigendecomposit ...

  10. <转>机器学习笔记之奇异值分解的几何解释与简单应用

    看到的一篇比较好的关于SVD几何解释与简单应用的文章,其实是有中文译本的,但是翻译的太烂,还不如直接看英文原文的.课本上学的往往是知其然不知其所以然,希望这篇文能为所有初学svd的童鞋提供些直观的认识 ...

随机推荐

  1. 【Java复健指南07】OOP中级02-重写与多态思想

    前情提要:https://www.cnblogs.com/DAYceng/category/2227185.html 重写 注意事项和使用细节 方法重写也叫方法覆法,需要满足下面的条件 1.子类的方法 ...

  2. 【Azure 事件中心】Event Hubs如何获取其中存放的历史消息

    问题描述 使用Azure Event Hub服务,除了正常的生产,消费消息以外,如果想拿到Event Hub中存储的历史消息?有什么方法呢? 问题解答 获取 Event Hubs 存储的历史消息,首先 ...

  3. 【Azure 应用服务】Python Function App重新部署后,出现 Azure Functions runtime is unreachable 错误

    问题描述 Python Function App重新部署后,出现 Azure Functions runtime is unreachable 错误 问题解答 在Function App的门户页面中, ...

  4. 【Azure 应用服务】如果发现当前使用的订阅无法在China North 3 区中创建App Service服务,如何来解决这个问题呢?

    问题描述 在创建App Service服务时,突然发现无法选择China North 3区域,如何来解决这个问题呢? 问题解答 根据Azure中服务都需要在订阅中注册的原理,因为China North ...

  5. 【Azure 应用服务】App Service 使用Tomcat运行Java应用,如何设置前端网页缓存的相应参数呢(-Xms512m -Xmx1204m)?

    问题描述 App Service 使用Tomcat运行Java应用,如何设置前端网页缓存的相应参数呢(-Xms512m -Xmx1204m)? 问题回答 App Service在Windows的环境中 ...

  6. ubuntu22.04安装配置redis

    本操作在虚拟机上 安装Redis 1)更新系统 sudo apt update sudo apt upgrade 2)安装Redis sudo apt install redis-server 3)测 ...

  7. 初识JavaScript逆向——以网易云音乐和招标网站为例

    前言:需要掌握一定的JavaScript基础,能看懂基础的JavaScript代码. 我们平常在浏览网站的时候会看到许多加密的参数,如果需要知道它的原始数据,就需要知道整个加密过程,所以本篇文章就来介 ...

  8. .NET周刊【3月第1期 2024-03-03】

    国内文章 推荐10款C#开源好用的Windows软件 https://www.cnblogs.com/Can-daydayup/p/18035760 DevToys.Microsoft PowerTo ...

  9. 关于Java并发多线程的一点思考

    写在开头 在过去的2023年双11活动中,天猫的累计访问人次达到了8亿,京东超60个品牌销售破10亿,直播观看人数3.0亿人次,订单支付频率1分钟之内可达百万级峰值,这样的瞬间高并发活动,给服务端带来 ...

  10. Ubuntu 14.04 Intel 处理器 硬编解码配置(Intel® Media Server Studio)

    PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(Bl ...