654.最大二叉树

题目链接:654.最大二叉树

给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建:

  1. 创建一个根节点,其值为 nums 中的最大值。
  2. 递归地在最大值 左边 的 子数组前缀上 构建左子树。
  3. 递归地在最大值 右边 的 子数组后缀上 构建右子树。

    返回 nums 构建的 最大二叉树 。

总体思路



构造树一般采用的是前序遍历,因为先构造中间节点,然后递归构造左子树和右子树。

  • 确定递归函数的参数和返回值

    参数传入的是存放元素的数组,返回该数组构造的二叉树的头结点,返回类型是指向节点的指针。

    代码如下:
TreeNode* constructMaximumBinaryTree(vector<int>& nums)
  • 确定终止条件

    题目中说了输入的数组大小一定是大于等于1的,所以我们不用考虑小于1的情况,那么当递归遍历的时候,如果传入的数组大小为1,说明遍历到了叶子节点了。

    那么应该定义一个新的节点,并把这个数组的数值赋给新的节点,然后返回这个节点。 这表示一个数组大小是1的时候,构造了一个新的节点,并返回。

    代码如下:
TreeNode* node = new TreeNode(0);
if (nums.size() == 1) {
    node->val = nums[0];
    return node;
}
  • 确定单层递归的逻辑

    这里有三步工作
  1. 先要找到数组中最大的值和对应的下标, 最大的值构造根节点,下标用来下一步分割数组。

    代码如下:
int maxValue = 0;
int maxValueIndex = 0;
for (int i = 0; i < nums.size(); i++) {
    if (nums[i] > maxValue) {
        maxValue = nums[i];
        maxValueIndex = i;
    }
}
TreeNode* node = new TreeNode(0);
node->val = maxValue;
  1. 最大值所在的下标左区间 构造左子树

    这里要判断maxValueIndex > 0,因为要保证左区间至少有一个数值。

    代码如下:
if (maxValueIndex > 0) {
    vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);
    node->left = constructMaximumBinaryTree(newVec);
}
  1. 最大值所在的下标右区间 构造右子树

    判断maxValueIndex < (nums.size() - 1),确保右区间至少有一个数值。

    代码如下:
if (maxValueIndex < (nums.size() - 1)) {
    vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());
    node->right = constructMaximumBinaryTree(newVec);
}

这样我们就分析完了,整体代码如下:

class Solution {
public:
TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
TreeNode* node = new TreeNode(0);
if (nums.size() == 1) {
node->val = nums[0];
return node;
}
// 找到数组中最大的值和对应的下标
int maxValue = 0;
int maxValueIndex = 0;
for (int i = 0; i < nums.size(); i++) {
if (nums[i] > maxValue) {
maxValue = nums[i];
maxValueIndex = i;
}
}
node->val = maxValue;
// 最大值所在的下标左区间 构造左子树
if (maxValueIndex > 0) {
vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);
node->left = constructMaximumBinaryTree(newVec);
}
// 最大值所在的下标右区间 构造右子树
if (maxValueIndex < (nums.size() - 1)) {
vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());
node->right = constructMaximumBinaryTree(newVec);
}
return node;
}
};

617.合并二叉树

题目链接:617.合并二叉树

给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。

你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。

总体思路

二叉树使用递归,就要想使用前中后哪种遍历方式?

本题使用哪种遍历都是可以的!

我们下面以前序遍历为例。

递归三部曲

  1. 确定递归函数的参数和返回值:

    首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。

    代码如下:
TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
  1. 确定终止条件:

    因为是传入了两个树,那么就有两个树遍历的节点t1 和 t2,如果t1 == NULL 了,两个树合并就应该是 t2 了(如果t2也为NULL也无所谓,合并之后就是NULL)。

    反过来如果t2 == NULL,那么两个数合并就是t1(如果t1也为NULL也无所谓,合并之后就是NULL)。

    代码如下:
if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
  1. 确定单层递归的逻辑:

    单层递归的逻辑就比较好写了,这里我们重复利用一下t1这个树,t1就是合并之后树的根节点(就是修改了原来树的结构)。

    那么单层递归中,就要把两棵树的元素加到一起。
t1->val += t2->val;

接下来t1 的左子树是:合并 t1左子树 t2左子树之后的左子树。

t1 的右子树:是 合并 t1右子树 t2右子树之后的右子树。

最终t1就是合并之后的根节点。

代码如下:

t1->left = mergeTrees(t1->left, t2->left);
t1->right = mergeTrees(t1->right, t2->right);
return t1;

此时前序遍历,完整代码就写出来了,如下:

class Solution {
public:
TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
// 修改了t1的数值和结构
t1->val += t2->val; // 中
t1->left = mergeTrees(t1->left, t2->left); // 左
t1->right = mergeTrees(t1->right, t2->right); // 右
return t1;
}
};

700.二叉搜索树中的搜索

题目链接:700.二叉搜索树中的搜索

给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。

总体思路

二叉搜索树是一个有序树:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉搜索树

    这就决定了,二叉搜索树,递归遍历和迭代遍历和普通二叉树都不一样。

    递归三部曲
  1. 确定递归函数的参数和返回值

    递归函数的参数传入的就是根节点和要搜索的数值,返回的就是以这个搜索数值所在的节点。

    代码如下:
TreeNode* searchBST(TreeNode* root, int val)
  1. 确定终止条件

    如果root为空,或者找到这个数值了,就返回root节点。

    if (root == NULL || root->val == val) return root;
  2. 确定单层递归的逻辑

    看看二叉搜索树的单层递归逻辑有何不同。

    因为二叉搜索树的节点是有序的,所以可以有方向的去搜索。

    如果root->val > val,搜索左子树,如果root->val < val,就搜索右子树,最后如果都没有搜索到,就返回NULL。

    代码如下:
TreeNode* result = NULL;
if (root->val > val) result = searchBST(root->left, val);
if (root->val < val) result = searchBST(root->right, val);
return result;

很多录友写递归函数的时候 习惯直接写 searchBST(root->left, val),却忘了 递归函数还有返回值。

递归函数的返回值是什么? 是 左子树如果搜索到了val,要将该节点返回。 如果不用一个变量将其接住,那么返回值不就没了。

所以要 result = searchBST(root->left, val)

整体代码如下:

class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if (root == NULL || root->val == val) return root;
TreeNode* result = NULL;
if (root->val > val) result = searchBST(root->left, val);
if (root->val < val) result = searchBST(root->right, val);
return result;
}
};

98.验证二叉搜索树

题目链接:98.验证二叉搜索树

给定一个二叉树,判断其是否是一个有效的二叉搜索树。

假设一个二叉搜索树具有如下特征:

  • 节点的左子树只包含小于当前节点的数。
  • 节点的右子树只包含大于当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

    有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。

递归法

可以递归中序遍历将二叉搜索树转变成一个数组,代码如下:

vector<int> vec;
void traversal(TreeNode* root) {
if (root == NULL) return;
traversal(root->left);
vec.push_back(root->val); // 将二叉搜索树转换为有序数组
traversal(root->right);
}

然后只要比较一下,这个数组是否是有序的,注意二叉搜索树中不能有重复元素

traversal(root);
for (int i = 1; i < vec.size(); i++) {
// 注意要小于等于,搜索树里不能有相同元素
if (vec[i] <= vec[i - 1]) return false;
}
return true;

整体代码如下:

class Solution {
private:
vector<int> vec;
void traversal(TreeNode* root) {
if (root == NULL) return;
traversal(root->left);
vec.push_back(root->val); // 将二叉搜索树转换为有序数组
traversal(root->right);
}
public:
bool isValidBST(TreeNode* root) {
vec.clear(); // 不加这句在leetcode上也可以过,但最好加上
traversal(root);
for (int i = 1; i < vec.size(); i++) {
// 注意要小于等于,搜索树里不能有相同元素
if (vec[i] <= vec[i - 1]) return false;
}
return true;
}
};
  • 陷阱1

    不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了

    我们要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点。所以以上代码的判断逻辑是错误的。
  • 陷阱2

    样例中最小节点 可能是int的最小值,如果这样使用最小的int来比较也是不行的。

    此时可以初始化比较元素为longlong的最小值。

代码随想录算法训练营Day18 二叉树|  654.最大二叉树  617.合并二叉树  700.二叉搜索树中的搜索  98.验证二叉搜索树的更多相关文章

  1. 代码随想录算法训练营day20 | leetcode ● 654.最大二叉树 ● 617.合并二叉树 ● 700.二叉搜索树中的搜索 ● 98.验证二叉搜索树

    LeetCode 654.最大二叉树 分析1.0 if(start == end) return节点索引 locateMaxNode(arr,start,end) new root = 最大索引对应节 ...

  2. 代码随想录算法训练营day18 | leetcode 513.找树左下角的值 ● 112. 路径总和 113.路径总和ii ● 106.从中序与后序遍历序列构造二叉树

    LeetCode 513.找树左下角的值 分析1.0 二叉树的 最底层 最左边 节点的值,层序遍历获取最后一层首个节点值,记录每一层的首个节点,当没有下一层时,返回这个节点 class Solutio ...

  3. 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点

    LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0  二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...

  4. 代码随想录算法训练营day21 | leetcode ● 530.二叉搜索树的最小绝对差 ● 501.二叉搜索树中的众数 ● ***236. 二叉树的最近公共祖先

    LeetCode 530.二叉搜索树的最小绝对差 分析1.0 二叉搜索树,中序遍历形成一个升序数组,节点差最小值一定在中序遍历两个相邻节点产生 ✡✡✡ 即 双指针思想在树遍历中的应用 class So ...

  5. 代码随想录算法训练营day01 | leetcode 704/27

    前言   考研结束半个月了,自己也简单休整了一波,估了一下分,应该能进复试,但还是感觉不够托底.不管怎样,要把代码能力和八股捡起来了,正好看到卡哥有这个算法训练营,遂果断参加,为机试和日后求职打下一个 ...

  6. 代码随想录算法训练营day13

    基础知识 二叉树基础知识 二叉树多考察完全二叉树.满二叉树,可以分为链式存储和数组存储,父子兄弟访问方式也有所不同,遍历也分为了前中后序遍历和层次遍历 Java定义 public class Tree ...

  7. 代码随想录算法训练营day17 | leetcode ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和

    LeetCode 110.平衡二叉树 分析1.0 求左子树高度和右子树高度,若高度差>1,则返回false,所以我递归了两遍 class Solution { public boolean is ...

  8. 代码随想录算法训练营day16 | leetcode ● 104.二叉树的最大深度 559.n叉树的最大深度 ● 111.二叉树的最小深度 ● 222.完全二叉树的节点个数

    基础知识 二叉树的多种遍历方式,每种遍历方式各有其特点 LeetCode 104.二叉树的最大深度 分析1.0 往下遍历深度++,往上回溯深度-- class Solution { int deep ...

  9. 代码随想录算法训练营day14 | leetcode 层序遍历 226.翻转二叉树 101.对称二叉树 2

    层序遍历 /** * 二叉树的层序遍历 */ class QueueTraverse { /** * 存放一层一层的数据 */ public List<List<Integer>&g ...

  10. 代码随想录算法训练营day02 | leetcode 977/209/59

    leetcode 977   分析1.0:   要求对平方后的int排序,而给定数组中元素可正可负,一开始有思维误区,觉得最小值一定在0左右徘徊,但数据可能并不包含0:遂继续思考,发现元素分布有三种情 ...

随机推荐

  1. Ocelot的限流、熔断和负载均衡

    一.限流 想要在Ocelot中设置限流,需要在设置如下绿色所示: { "GlobalConfiguration": { "RateLimitOptions": ...

  2. GLM:通用语言模型

    ChatGPT已经火了一段时间了,国内也出现了一些平替,其中比较容易使用的是ChatGLM-6B:https://github.com/THUDM/ChatGLM-6B ,主要是能够让我们基于单卡自己 ...

  3. 系统评价——理想点TOPSIS法的R语言实现(五)

    TOPSIS 法是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距.TOPSIS全称Technique for Order Preference by Simi ...

  4. 巧用Nginx配置解决跨域问题

    页面nginx配置 1,前端页面放在域名根目录,比如,http://www.xuecheng.com/ ,对应的nginx配置: #门户 location / { alias D:/Z_lhy/Spr ...

  5. sqlplus文件查看oracle自带命令的执行过程

    问题描述:看到一篇文章 在$ORACLE_HOME/bin/sqlplus中可以查看到数据库命令的查询语句.可以直接编辑sqlplus文件,查到到我们平时标准系统命令的原脚本,但是自己进行编辑查看却是 ...

  6. 学会提示-AI时代职场必修课

    作者:京东 何雨航 " 上个时代要学会提问,这个时代要学会提示." 引言 当你在写提数代码时,小张已经完成了数据分析:当你正在整理材料时,小王却在和对象逛环球影城:述职时,你发现小 ...

  7. python运维工程师-cmdb项目-day2

    1.捕获异常信息 import tracebackdef disk(): int('saaa')def run(): try: disk() except Exception: ret=traceba ...

  8. Win Pycharm + Airtest + 夜神模拟器 实现APP自动化

    前言: 前面已经讲过了Airtest的简单配置与使用了,相信大家已经对于操作Airtest没有什么问题了(#^.^#) 但是在Airtest IDE中编写代码是有局限性的,而且不能封装Airtest的 ...

  9. Word中使用ChatGPT,写文档如有神助

    [部署教程]国内网络可用,最强 ChatGPT 学术论文写作工具原创****付费 简介 Word GPT Plus 是一个集成了 chatGPT 模型的 Word 插件.它允许你基于你在文档中写的内容 ...

  10. 【Docker】Harbor 分布式仓库管理

    一.Harbor 介绍 Harbor 是 VMware 公司开源的企业级 Docker Registry 项目,其目标是帮助用户迅速搭建一个企业级的 Docker Registry (私有仓库)服务. ...