在Python中,我们可以使用requests库来发送HTTP请求,并使用threadingmultiprocessingasyncio(配合aiohttp)或concurrent.futures等库来并发执行这些请求。这里,我将为我们展示使用concurrent.futures.ThreadPoolExecutorrequests库并发执行HTTP请求的示例。

1.使用concurrent.futures.ThreadPoolExecutor并发发送请求示例

首先,我们需要安装requests库(如果还没有安装的话):

bash复制代码

pip install requests

然后,我们可以使用以下代码来并发地发送HTTP GET请求:

import concurrent.futures
import requests # 假设我们有一个URL列表
urls = [
'http://example.com/api/data1',
'http://example.com/api/data2',
'http://example.com/api/data3',
# ... 添加更多URL
] # 定义一个函数,该函数接收一个URL,发送GET请求,并打印响应内容
def fetch_data(url):
try:
response = requests.get(url)
response.raise_for_status() # 如果请求失败(例如,4xx、5xx),则抛出HTTPError异常
print(f"URL: {url}, Status Code: {response.status_code}, Content: {response.text[:100]}...")
except requests.RequestException as e:
print(f"Error fetching {url}: {e}") # 使用ThreadPoolExecutor并发地执行fetch_data函数
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor: # 你可以根据需要调整max_workers的值
future_to_url = {executor.submit(fetch_data, url): url for url in urls}
for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
try:
# 通过调用future.result()来获取函数的返回值,这会阻塞,直到结果可用
# 但是请注意,这里我们只是打印结果,没有返回值,所以调用future.result()只是为了等待函数完成
future.result()
except Exception as exc:
print(f'Generated an exception for {url}: {exc}')

在这里简单解释一下这个代码示例。

(1)我们首先定义了一个URL列表,这些是我们想要并发访问的URL。

(2)然后,我们定义了一个函数fetch_data,它接收一个URL作为参数,发送GET请求,并打印响应的状态码和内容(只打印前100个字符以节省空间)。如果发生任何请求异常(例如,网络错误、无效的URL、服务器错误等),它会捕获这些异常并打印错误消息。

(3)使用concurrent.futures.ThreadPoolExecutor,我们可以轻松地并发执行fetch_data函数。我们创建了一个ThreadPoolExecutor实例,并指定了最大工作线程数(在这个例子中是5,但我们可以根据需要调整这个值)。然后,我们使用列表推导式将每个URL与一个Future对象关联起来,该对象表示异步执行的函数。

(4)最后,我们使用as_completed函数迭代所有完成的Future对象。对于每个完成的Future对象,我们调用result方法来获取函数的返回值(尽管在这个例子中我们没有使用返回值)。如果函数执行期间发生任何异常,result方法会重新引发该异常,我们可以捕获并处理它。

这个示例展示了如何使用Python的concurrent.futures模块来并发地发送HTTP请求。这种方法在IO密集型任务(如网络请求)上特别有效,因为它允许在等待IO操作完成时释放CPU资源供其他线程使用。

2.requests库并发发送HTTP GET请求的完整Python代码示例

以下是一个使用concurrent.futures.ThreadPoolExecutorrequests库并发发送HTTP GET请求的完整Python代码示例:

import concurrent.futures
import requests # 假设我们有一个URL列表
urls = [
'https://www.example.com',
'https://httpbin.org/get',
'https://api.example.com/some/endpoint',
# ... 添加更多URL
] # 定义一个函数来发送GET请求并处理响应
def fetch_url(url):
try:
response = requests.get(url, timeout=5) # 设置超时为5秒
response.raise_for_status() # 如果请求失败,抛出HTTPError异常
return response.text # 返回响应内容,这里只是作为示例,实际使用中可能不需要返回
except requests.RequestException as e:
print(f"Error fetching {url}: {e}")
return None # 使用ThreadPoolExecutor并发地发送请求
def fetch_all_urls(urls):
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
# 使用executor.map来自动处理迭代和Future的获取
results = executor.map(fetch_url, urls) # 处理结果(这里只是简单地打印出来)
for result in results:
if result is not None:
print(f"Fetched content from a URL (truncated): {result[:100]}...") # 调用函数
fetch_all_urls(urls)

在这个示例中,我们定义了一个fetch_url函数,它接收一个URL,发送GET请求,并返回响应内容(或在出错时返回None)。然后,我们定义了一个fetch_all_urls函数,它使用ThreadPoolExecutor并发地调用fetch_url函数,并将结果收集在一个迭代器中。最后,我们遍历这个迭代器,并打印出每个成功获取到的响应内容(这里只打印了前100个字符作为示例)。

请注意,我们在requests.get中设置了一个超时参数(timeout=5),这是为了防止某个请求因为网络问题或其他原因而无限期地等待。在实际应用中,根据我们的需求调整这个值是很重要的。

此外,我们还使用了executor.map来自动处理迭代和Future的获取。executor.map函数会返回一个迭代器,它会产生fetch_url函数的返回值,这些值在函数完成后会自动从相应的Future对象中提取出来。这使得代码更加简洁,并且减少了显式处理Future对象的需要。

3.如何在Python中实现并发编程

在Python中实现并发编程,主要有以下几种方式:

(1)使用threading模块

threading模块提供了多线程编程的API。Python的线程是全局解释器锁(GIL)下的线程,这意味着在任意时刻只有一个线程能够执行Python字节码。然而,对于I/O密集型任务(如网络请求),多线程仍然可以通过并发地等待I/O操作来提高性能。

示例:

import threading
import requests def fetch_url(url):
try:
response = requests.get(url)
response.raise_for_status()
print(f"URL: {url}, Status Code: {response.status_code}")
except requests.RequestException as e:
print(f"Error fetching {url}: {e}") threads = []
for url in urls:
t = threading.Thread(target=fetch_url, args=(url,))
threads.append(t)
t.start() # 等待所有线程完成
for t in threads:
t.join()

(2)使用multiprocessing模块

multiprocessing模块提供了跨多个Python解释器的进程间并行处理。这对于CPU密集型任务特别有用,因为每个进程都有自己的Python解释器和GIL,可以充分利用多核CPU的并行处理能力。

示例:

from multiprocessing import Pool
import requests def fetch_url(url):
try:
response = requests.get(url)
response.raise_for_status()
return f"URL: {url}, Status Code: {response.status_code}"
except requests.RequestException as e:
return f"Error fetching {url}: {e}" with Pool(processes=4) as pool: # 设定进程池的大小
results = pool.map(fetch_url, urls) for result in results:
print(result)

(3)使用asyncio模块(针对异步I/O)

asyncio是Python 3.4+中引入的用于编写单线程并发代码的库,特别适合编写网络客户端和服务器。它使用协程(coroutine)和事件循环(event loop)来管理并发。

示例(使用aiohttp库进行异步HTTP请求):

import asyncio
import aiohttp async def fetch_url(url, session):
async with session.get(url) as response:
return await response.text() async def main():
async with aiohttp.ClientSession() as session:
tasks = []
for url in urls:
task = asyncio.create_task(fetch_url(url, session))
tasks.append(task) results = await asyncio.gather(*tasks)
for result, url in zip(results, urls):
print(f"URL: {url}, Content: {result[:100]}...") # Python 3.7+ 可以使用下面的方式运行主协程
asyncio.run(main())

注意:asyncio.run()是在Python 3.7中引入的,用于运行顶层入口点函数。在Python 3.6及以下版本中,我们需要自己设置和运行事件循环。

(4)使用concurrent.futures模块

concurrent.futures模块提供了高层次的接口,可以轻松地编写并发代码。它提供了ThreadPoolExecutor(用于线程池)和ProcessPoolExecutor(用于进程池)。

前面已经给出了ThreadPoolExecutor的示例,这里不再重复。ProcessPoolExecutor的用法与ThreadPoolExecutor类似,只是它是基于进程的。

选择哪种并发方式取决于我们的具体需求。对于I/O密集型任务,多线程或异步I/O通常是更好的选择;对于CPU密集型任务,多进程可能是更好的选择。此外,异步I/O通常比多线程具有更好的性能,特别是在高并发的网络应用中。

python并发执行request请求的更多相关文章

  1. python 并发执行

    并发执行, 精简代码. 适用python2 和python3 # -*- encoding:utf-8 -*- from threading import Thread from multiproce ...

  2. 聊聊 Jmeter 如何并发执行 Python 脚本

    1. 前言 大家好,我是安果! 最近有小伙伴后台给我留言,说自己用 Django 写了一个大文件上传的 Api 接口,现在想本地检验一下接口并发的稳定性,问我有没有好的方案 本篇文章以文件上传为例,聊 ...

  3. python并发编程(并发与并行,同步和异步,阻塞与非阻塞)

    最近在学python的网络编程,学了socket通信,并利用socket实现了一个具有用户验证功能,可以上传下载文件.可以实现命令行功能,创建和删除文件夹,可以实现的断点续传等功能的FTP服务器.但在 ...

  4. Python并发编程系列之协程

    1 引言 协程是近几年并发编程的一个热门话题,与Python多进程.多线程相比,协程在很多方面优势明显.本文从协程的定义和意义出发,结合asyncio模块详细讲述协程的使用. 2 协程的意义 2.1 ...

  5. python并发学习总结

    目录 一.理解操作系统 二.任务类型 三.Socket模块 四.一个简单的C/S程序 五.使用阻塞IO实现并发 方案一:阻塞IO+多进程 方案二:阻塞IO+多线程 阻塞IO模型的思考和总结 六.使用非 ...

  6. Python并发(二)

    并发是指一次处理多件事,而并行是指一次做多件事.二者不同,但互相有联系.打个比方:像Python的多线程,就是并发,因为Python的解释器GIL是线程不安全的,一次只允许执行一个线程的Python字 ...

  7. Python 并发部分的面试题

    进程 进程间内存是否共享?如何实现通讯? 进程间内存不共享,可以通过 Manage模块加锁 通过队列或 通过管道加锁 socket实现通讯 请聊聊进程队列的特点和实现原理? 先进先出 Queue 后进 ...

  8. python并发编程之多进程二

    一,multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.P ...

  9. python并发编程之多进程(三):共享数据&进程池

    一,共享数据 展望未来,基于消息传递的并发编程是大势所趋 即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合 通过消息队列交换数据.这样极大地减少了对使用锁定和其他同步手段的需求, 还可以扩展 ...

  10. Python并发编程之多线程使用

    目录 一 开启线程的两种方式 二 在一个进程下开启多个线程与在一个进程下开启多个子进程的区别 三 练习 四 线程相关的其他方法 五 守护线程 六 Python GIL(Global Interpret ...

随机推荐

  1. WPF 基于 Azure 的认知服务 情绪分析 语言检测 关键短语提取

    本文主要是来安利大家基于 Azure 的认知服务,主要是文本认知服务,可以做到分析输入文本的情绪,以及判断当前输入文本所属语言等功能 本文分为两个部分 ,一个就是在 Azure 上的配置,另一个就是 ...

  2. NopCommerce支持多种类型的数据库

    本文章的内容是根据本人阅读NopCommerce源码的理解,如有不对的地方请指正,谢谢. 阅读目录 1.类结构关系图 2.分析 3.NopCommerce应用 类结构关系图 分析 NopObjectC ...

  3. 陪玩app小程序H5开发制作多少钱-软件开发,源码交付,永久售后.-陪玩线下陪玩软件搭建APP(系统、平台、源码)-游戏陪玩系统APP派单大厅H5社交圈子+多人聊天室小程序

    线下陪玩APP平台,如何防止陪玩师接私单? 线下陪玩APP平台如果不解决陪玩师接私单的问题,那么你的陪玩平台一定赚不到钱! 为什么这么说呢?平台花费10万引流来1000个顾客,每个顾客的引流成本就是1 ...

  4. Rails向数据库添加新字段和修改字段

    目录 添加字段 控制台上执行下面的命令 会生成文件db/migrate/20210529131328_add_column_to_black_ips.rb 执行迁移 执行结果 修改字段 添加迁移文件 ...

  5. 记录一次uniapp使用scrollview

    在uni-app框架下,使用scroll-view进行下拉加载时,不要设置 scroll-top 或者 scroll-left 否则会出现,页面抖动的情况

  6. C语言:约瑟夫问题——使用循环链表解决

    传说有30个乘客同乘一条船,因为严重超载,加上风浪水作,危险万分.船长告诉乘客,只有将全船一半的乘客投入海 中,其余人才能幸免于难.他们约定了一个规则:30个人围成一圈,由第一个人数起,依次报数,数到 ...

  7. Pageoffice6 实现后台批量转PDF文档

    在实际项目开发中如果遇到批量动态生成PDF文档的需求,只需参考后台批量生成PDF文档,目前网上也有一些针对此需求的方案,如果您想要了解这些方案的对比,请查看后台生成单个Word文档中的"方案 ...

  8. jenkens

    [root@mcw01 ~]$ ls .jenkins/ config.xml jenkins.install.UpgradeWizard.state nodeMonitors.xml secret. ...

  9. RESTful风格openapi接口设计+openapi远程服务调用

    我们平常开发一般只使用GET.POST方法.而对于HTTP给出的PUT.DELETE等其他方法都没使用.以RESTful风格设计接口就能全部用上这些方法. 按照RESTful理查德森成熟度模型改造接口 ...

  10. NumPy 数组排序、过滤与随机数生成详解

    NumPy 数组排序 排序数组 排序数组意味着将元素按特定顺序排列.顺序可以是数字大小.字母顺序.升序或降序等. NumPy 的 ndarray 对象提供了一个名为 sort() 的函数,用于对数组进 ...