题目链接

题目

题目描述

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2

is in the lower left corner:

9 2

-4 1

-1 8

and has a sum of 15.

输入描述:

The input consists of an N*N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by \(N^2\) integers separated by whitespace (spaces and newlines). These are the \(N^2\) integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

输出描述

Output the sum of the maximal sub-rectangle.

示例1

输入

4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1 8 0 -2

输出

15

题解

知识点:线性dp,枚举,前缀和。

最大子串和的变种。可以枚举矩阵行端点的组合,然后对列做最大子串和。

先用数组 \(lsum\) 得到每列的前缀和。然后设 \(dp[i]\) 为某次行组合考虑到 \(i\) 列(选 \(i\) 列)的最大子矩阵和。转移方程为:

\[dp[k] = \max (dp[k-1] + lsum[k][j] - lsum[k][i-1])
\]

时间复杂度 \(O(n^3)\)

空间复杂度 \(O(n^2)\)

代码

#include <bits/stdc++.h>

using namespace std;

int lsum[107][107], dp[107];

int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 1;i <= n;i++)
for (int j = 1, tmp;j <= n;j++)
cin >> lsum[j][i], lsum[j][i] += lsum[j][i - 1];
int ans = -2e9;
for (int i = 1;i <= n;i++) {
for (int j = i;j <= n;j++) {
dp[0] = 0;
for (int k = 1;k <= n;k++)
dp[k] = max(dp[k - 1], 0) + lsum[k][j] - lsum[k][i - 1];
for (int k = 1;k <= n;k++)
ans = max(ans, dp[k]);
}
}
cout << ans << '\n';
return 0;
}

NC50959 To the Max的更多相关文章

  1. Kafka副本管理—— 为何去掉replica.lag.max.messages参数

    今天查看Kafka 0.10.0的官方文档,发现了这样一句话:Configuration parameter replica.lag.max.messages was removed. Partiti ...

  2. 排序算法----基数排序(RadixSort(L,max))单链表版本

    转载http://blog.csdn.net/Shayabean_/article/details/44885917博客 先说说基数排序的思想: 基数排序是非比较型的排序算法,其原理是将整数按位数切割 ...

  3. [LeetCode] Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K

    Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...

  4. [LeetCode] Max Points on a Line 共线点个数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  5. BZOJ 4390: [Usaco2015 dec]Max Flow

    4390: [Usaco2015 dec]Max Flow Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 113[Submi ...

  6. supervisor监管进程max file descriptor配置不生效的问题

    配置了 sudo vim /etc/security/limits.conf * soft nofile * hard nofile   单独起进程没问题, 放到supervisor下监管启动,则报错 ...

  7. Max double slice sum 的解法

    1. 上题目: Task description A non-empty zero-indexed array A consisting of N integers is given. A tripl ...

  8. 3ds max 渲染清晰面片的边缘

    3ds max的菜单栏 -> 渲染 -> 材质编辑器->精简材质编辑器,将面状打勾,如下图,就能渲染出面片清晰的图形.

  9. sql中NVARCHAR(MAX) 性能和占空间分析 varchar(n),nvarchar(n) 长度性能及所占空间分析

    varchar(n),nvarchar(n) 中的n怎么解释: nvarchar(n)最多能存n个字符,不区分中英文. varchar(n)最多能存n个字节,一个中文是两个字节. 所占空间: nvar ...

  10. find out the neighbouring max D_value by counting sort in stack

    #include <stdio.h> #include <malloc.h> #define MAX_STACK 10 ; // define the node of stac ...

随机推荐

  1. Meta AI新发布的超大规模语言模型-OPT-175B

    ​ Meta AI在2022年5月3日新发布的OPT-175B模型,该模型是现阶段第一个模型参数超过千亿级别的开放模型,其次该模型与GPT-3相比,更加开放及便于访问. 具体开放性表现在如下几个方面: ...

  2. AHB 局限性

    AHB's problem SoC bus 架构 AXI is used more and more 频率200M使用AHB,频率再升高就使用AXI AHB的问题 AHB协议本身限制要求较高,比如co ...

  3. PageHelper 分页不起作用

    将 reasonable 设置为 false   .

  4. Linux-目录-cd-mdkir-rm-ls-pwd

  5. [转帖]Linux中查找大文件两种姿势

    https://rumenz.com/rumenbiji/linux-find-du-max-file.html 使用find命令查找大文件 find命令是Linux系统管理员工具库中最强大的工具之一 ...

  6. [转帖]elasticsearch-create-enrollment-tokenedit

    https://www.elastic.co/guide/en/elasticsearch/reference/current/create-enrollment-token.html The ela ...

  7. [转帖]线上一个隐匿 Bug 的复盘

    前言 之前负责的一个项目上线好久了,最近突然爆出一 Bug,最后评估影响范围将 Bug 升级成了故障,只因为影响的数据量有 10000 条左右,对业务方造成了一定的影响. 但因为不涉及到资金损失,Bu ...

  8. [转帖]LVS入门篇(四)之LVS实战

    LVS入门篇(四)之LVS实战 https://www.cnblogs.com/linuxk/p/9360922.html 一.LVS的NAT模式实战 1.环境说明: HOST OS role rem ...

  9. [转帖]Skywalking学习及整合springboot

    目录 1. Skywalking概述 2. Skywalking主要功能 3. Skywalking主要特性 4. Skywalking架构简介 5. Spring Cloud与Skywalking实 ...

  10. [转帖]Arm vs X86 (unfinished)

    http://home.ustc.edu.cn/~shaojiemike/posts/arm/   ARM Ltd history 诞生 1981年,被Intel拒绝的Acorn(橡子) Comput ...