pandas -- DataFrame的级联以及合并操作
开发环境
- anaconda
- 集成环境:集成好了数据分析和机器学习中所需要的全部环境
- 安装目录不可以有中文和特殊符号
- jupyter
- anaconda提供的一个基于浏览器的可视化开发工具
import pandas as pd
import numpy as np
级联操作 -- 对应表格
- pd.concat
- pd.append
- pandas使用pd.concat函数,与np.concatenate函数类似,只是多了一些参数:
- objs
- axis=0
- keys
- join='outer' / 'inner':表示的是级联的方式,outer会将所有的项进行级联(忽略匹配和不匹配),而inner只会将匹配的项级联到一起,不匹配的不级联
- ignore_index=False
匹配级联
df1 = pd.DataFrame(data=np.random.randint(0,100,size=(5,3)),columns=['A','B','C'])
df2 = pd.DataFrame(data=np.random.randint(0,100,size=(5,3)),columns=['A','D','C'])
pd.concat((df1,df2),axis=1) # 行列索引都一致的级联叫做匹配级联

不匹配级联
- 不匹配指的是级联的维度的索引不一致。例如纵向级联时列索引不一致,横向级联时行索引不一致
- 有2种连接方式:
- 外连接:补NaN(默认模式)
- 内连接:只连接匹配的项
pd.concat((df1,df2),axis=0)

内连接
pd.concat((df1,df2),axis=0,join='inner') # inner直把可以级联的级联不能级联不处理

外连接
- 如果想要保留数据的完整性必须使用 outer(外连接)
pd.concat((df1,df2),axis=0,join='outer')

- append函数的使用
df1.append(df2)

合并操作 -- 对应数据
- merge与concat的区别在于,merge需要依据某一共同列来进行合并
- 使用pd.merge()合并时,会自动根据两者相同column名称的那一列,作为key来进行合并。
- 注意每一列元素的顺序不要求一致
一对一合并
from pandas import DataFrame
df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
'group':['Accounting','Engineering','Engineering'],
})
df1

df2 = DataFrame({'employee':['Lisa','Bob','Jake'],
'hire_date':[2004,2008,2012],
})
df2

pd.merge(df1,df2,on='employee')

一对多合并
df3 = DataFrame({
'employee':['Lisa','Jake'],
'group':['Accounting','Engineering'],
'hire_date':[2004,2016]})
df3

df4 = DataFrame({'group':['Accounting','Engineering','Engineering'],
'supervisor':['Carly','Guido','Steve']
})
df4

pd.merge(df3,df4) # on如果不写,默认情况下使用两表中公有的列作为合并条件

多对多合并
df1 = DataFrame({'employee':['Bob','Jake','Lisa'],
'group':['Accounting','Engineering','Engineering']})
df1

df5 = DataFrame({'group':['Engineering','Engineering','HR'],
'supervisor':['Carly','Guido','Steve']
})
df5

pd.merge(df1,df5,how='right')

pd.merge(df1,df5,how='left')

key的规范化
- 当两张表没有可进行连接的列时,可使用left_on和right_on手动指定merge中左右两边的哪一列列作为连接的列
df1 = DataFrame({'employee':['Bobs','Linda','Bill'],
'group':['Accounting','Product','Marketing'],
'hire_date':[1998,2017,2018]})
df1

df5 = DataFrame({'name':['Lisa','Bobs','Bill'],
'hire_dates':[1998,2016,2007]})
df5

pd.merge(df1,df5,left_on='employee',right_on='name')

内合并与外合并
- outer取并集
- inner取交集
df6 = DataFrame({'name':['Peter','Paul','Mary'],
'food':['fish','beans','bread']}
)
df7 = DataFrame({'name':['Mary','Joseph'],
'drink':['wine','beer']})
df6

df7

pd.merge(df6,df7,how='outer')

df6 = DataFrame({'name':['Peter','Paul','Mary'],
'food':['fish','beans','bread']}
)
df7 = DataFrame({'name':['Mary','Joseph'],
'drink':['wine','beer']})
df6

df7

pd.merge(df6,df7,how='inner')

pandas -- DataFrame的级联以及合并操作的更多相关文章
- 数据分析03 /基于pandas的数据清洗、级联、合并
数据分析03 /基于pandas的数据清洗.级联.合并 目录 数据分析03 /基于pandas的数据清洗.级联.合并 1. 处理丢失的数据 2. pandas处理空值操作 3. 数据清洗案例 4. 处 ...
- pandas DataFrame的查询方法(loc,iloc,at,iat,ix的用法和区别)
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pand ...
- pandas 学习 第7篇:DataFrame - 数据处理(应用、操作索引、重命名、合并)
DataFrame的这些操作和Series很相似,这里简单介绍一下. 一,应用和应用映射 apply()函数对每个轴应用一个函数,applymap()函数对每个元素应用一个函数: DataFrame. ...
- Pandas | Dataframe的merge操作,像数据库一样尽情join
今天是pandas数据处理第8篇文章,我们一起来聊聊dataframe的合并. 常见的数据合并操作主要有两种,第一种是我们新生成了新的特征,想要把它和旧的特征合并在一起.第二种是我们新获取了一份数据集 ...
- pandas之合并操作
Pandas 提供的 merge() 函数能够进行高效的合并操作,这与 SQL 关系型数据库的 MERGE 用法非常相似.从字面意思上不难理解,merge 翻译为"合并",指的是将 ...
- pandas DataFrame 数据处理常用操作
Xgboost调参: https://wuhuhu800.github.io/2018/02/28/XGboost_param_share/ https://blog.csdn.net/hx2017/ ...
- Python pandas DataFrame操作
1. 从字典创建Dataframe >>> import pandas as pd >>> dict1 = {'col1':[1,2,5,7],'col2':['a ...
- Python时间处理,datetime中的strftime/strptime+pandas.DataFrame.pivot_table(像groupby之类 的操作)
python中datetime模块非常好用,提供了日期格式和字符串格式相互转化的函数strftime/strptime 1.由日期格式转化为字符串格式的函数为: datetime.datetime.s ...
- pandas.DataFrame的pivot()和unstack()实现行转列
示例: 有如下表需要进行行转列: 代码如下: # -*- coding:utf-8 -*- import pandas as pd import MySQLdb from warnings impor ...
- 如何迭代pandas dataframe的行
from:https://blog.csdn.net/tanzuozhev/article/details/76713387 How to iterate over rows in a DataFra ...
随机推荐
- Hive执行计划之只有map阶段SQL性能分析和解读
目录 目录 概述 1.不带函数操作的select-from-where型简单SQL 1.1执行示例 1.2 运行逻辑分析 1.3 伪代码解释 2.带普通函数和运行操作符的普通型SQL执行计划解读 2. ...
- CDI的概念理解
1.CDI是什么?目的和作用是什么? 概念(是什么):是JavaEE 6标准中一个规范, 作用(干什么): 它提供了Java EE平台上服务注入的组件管理核心,简化应该是CDI的目标,让一切都可以被注 ...
- Unity UGUI的Mask(遮罩)组件的介绍及使用
Unity UGUI的Mask(遮罩)组件的介绍及使用 1. 什么是Mask组件? Mask(遮罩)组件是Unity UGUI中的一个重要组件,用于限制子对象的可见区域.通过设置遮罩组件,可以实现一些 ...
- Isito 入门(四):微服务可观测性
本教程已加入 Istio 系列:https://istio.whuanle.cn 目录 可观测性 通过 Gateway 访问 Kiali 查看链路追踪数据 可能失败的原因 修复 Kiali Grafa ...
- 第一次用vs编译器进行第一次编程所遇问题
首先这款编译器具有多种语言:C#.C++.Java.Python等,这对像我一样的编程小白十分友好. 然后就是我第一天编程遇到的问题: 1."printf"未被定义 int a = ...
- 开源资产管理系统chemex
目录 项目地址 部署 初始化环境 安装docker.Mariadb 配置数据库 docker 脚本 运行 项目地址 gitee项目链接 部署 参考链接:Centos7使用Docker部署Chemex资 ...
- ApiPost: Error:ESOCKETTIMEDOUT
原因 apipost设置响应时间过短 解决方案
- python2.7源码安装方式
安装python2.7 下载Python 2.7, 下载地址 解压安装 tar -xzvf Python-2.7.15.tgz cd Python-2.7.15 ./configure --prefi ...
- [prometheus]基于influxdb2实现远端存储
前言 Prometheus自带的时序数据库胜在使用方便,缺点在于难以维护,如果数据有问题,可能需要删除存储目录.重建目录再重启Prometheus,才能恢复正常.而且Prometheus自带的时序数据 ...
- mysql8数据转移到mysql5
源MySQL版本:8.0.20 目标MySQL版本:5.7.19 使用mysqldump.mysqlpump等工具备份源数据库的数据为sql文件 将sql文件里的utf8mb4_0900_ai_ci ...