在之前的《手把手教你用 NebulaGraph AI 全家桶跑图算法》中,除了介绍了 ngai 这个小工具之外,还提到了一件事有了 Jupyter Notebook 插件: https://github.com/wey-gu/ipython-ngql,可以更便捷地操作 NebulaGraph。

本文就手把手教你咋在 Jupyter Notebook 中,愉快地玩图数据库。

只要你仔细读完本文,一条 %ngql MATCH p=(n:player)->() RETURN p 命令就可以直接查询出数据,再接上 %ng_draw 就可以画出返回结果。

下面,进入今天的主菜——Jupyter Notebook 扩展:ipython-ngql

其实,ipython-ngql 这个扩展断断续续地开发了两年,我一直没有开发完成。恰好之前有空,并完成了一直以来的心愿,把 ipython-ngql 重构并正式发布了。它除了完全适配 NebulaGrpah 3.x 所有查询之外,还支持了 Notebook 内的返回结果可视化。

在介绍 ipython-ngql 是什么之前,我先做个简单的 Jupyter Notebook 介绍,虽然大多数的 Python 开发都知道。

什么是 Jupyter Notebook

Jupyter Notebook / Jupyter Labs 项目最初起源自 IPython 这个项目,后者是一个命令行上的交互式 Python 解释环境。因为有很好的补全、高亮和丰富的扩展能力,IPython 很快就成为了 Python 的第一 IDLE 替代项目,并且后来衍生出来了可以在浏览器里做更多事情的笔记本模式。

Jupyter 的笔记本模式改变了数据科学和相关科研、工业领域里人们协作、开发、分享面向数据的工作方式。有了它,我们可以在一个笔记本中可复现、可分享地进行代码执行、科学计算、数据可视化等等操作,是数据科学家、科研工作者的非常喜欢的工具,而且它还早就引入了 Python 之外的很多其他语言作为执行内核支持。

因为在 Jupyter Notebook 中进行 NebulaGraph 的查询、计算、可视化一直是很多社区同学的心愿,在前阵子 NebulaGrpah AI Suite 的开发过程中,我并实现了 Jupyter 中方便进行 NetworkX / PySpark 的计算。既然有图计算了,索性我就把相关的查询、可视化功能一起做掉,并作为 Jupyter 的扩展一起发布出来给大家使用啦。

ipython-ngql 的安装

因为 ipython-ngql 本文就是一个基于 Jupyter Notebook 的扩展,所以它的安装非常简单。只需要在 Jupyter Notebook 中执行 %pip install ipython-ngql ,再加载它就好:

%pip install ipython-ngql
%load_ext ngql

然后,我们就可以用 %ngql 这个 Jupyter Magic word 连接 NebulaGraph 了:

%ngql --address 127.0.0.1 --port 9669 --user root --password nebula #填入 ip 地址和 graphd 的端口号

当成功连接服务之后,SHOW SPACES 的结果会返回在 notebook cell 下。

除了上面的扩展安装方法之外,你可以从 Docker 桌面版的扩展市场里搜索 NebulaGraph,一键安装本地开发环境。安装完毕之后,进入 NebulaGraph Docker 扩展内部,点击 NebulaGraph AI ,点击 Install NX Mode 安装本地的 NebulaGraph + Jupyter Notebook 开发环境。

数据查询

ipython-ngql 现在支持两种语法 %ngql 接单行查询和 %%ngql 接多行查询。

单行查询

例如:

%ngql USE basketballplayer;
%ngql MATCH (v:player{name:"Tim Duncan"})-->(v2:player) RETURN v2.player.name AS Name;

多行查询

例如:

%%ngql
ADD HOSTS "storaged3":9779,"storaged4":9779;
SHOW HOSTS;

渲染结果

在任意一个查询后面紧跟着一个 %ng_draw 指令,就可以把结果可视化渲染出来。像是这样:

# one query
%ngql GET SUBGRAPH 2 STEPS FROM "player101" YIELD VERTICES AS nodes, EDGES AS relationships;
%ng_draw # another query
%ngql match p=(:player)-[]->() return p LIMIT 5
%ng_draw

效果:

此外,你的渲染的结果还会被保存为单文件 html ,方便我们可以内嵌到任意网页中。

像是下面,其实就是一个内嵌的页面:

高阶用法

下面,我们来展示一些便捷的高阶用法。比如 %ngql help,可以获得更多帮助信息。

操作查询结果为 pandas DF

你的每次查询,返回的结果会被存到 _ 变量中,方便我们对它进行读取。像是这样:

返回原始 ResultSet

ipython-ngql 默认返回的结果格式是 pandas DF,如果我们想在 Jupyter Notebook 中交互地调试 Python 的 NebulaGraph 应用代码,可以将返回结果设置为原始的 ResultSet 格式,方便直观进行 query 与结果解析。例如:

In [1] : %config IPythonNGQL.ngql_result_style="raw"

In [2] : %%ngql USE pokemon_club;
...: GO FROM "Tom" OVER owns_pokemon YIELD owns_pokemon._dst as pokemon_id
...: | GO FROM $-.pokemon_id OVER owns_pokemon REVERSELY YIELD owns_pokemon._dst AS Trainer_Name;
...:
...:
Out[3]:
ResultSet(ExecutionResponse(
error_code=0,
latency_in_us=3270,
data=DataSet(
column_names=[b'Trainer_Name'],
rows=[Row(
values=[Value(
sVal=b'Tom')]),
...
Row(
values=[Value(
sVal=b'Wey')])]),
space_name=b'pokemon_club')) In [4]: r = _ In [5]: r.column_values(key='Trainer_Name')[0].cast()
Out[5]: 'Tom'

查询模板

除了上面那些功能,我还支持了模板功能,语法沿用了 Jinja2{{ variable }}。详见这个例子:

未来

后续,我打算增强可视化的自定义选项,也欢迎社区里的大伙来贡献新的 feature、idea。

项目的 repo 在 https://github.com/wey-gu/ipython-ngql


谢谢你读完本文 (///▽///)

如果你想尝鲜图数据库 NebulaGraph,记得去 GitHub 下载、使用、(з)-☆ star 它 -> GitHub;和其他的 NebulaGraph 用户一起交流图数据库技术和应用技能,留下「你的名片」一起玩耍呀~

Jupyter Notebook 遇上 NebulaGraph,可视化探索图数据库的更多相关文章

  1. “jupyter notebook 不能导入python库但是终端上可以实现”的问题的解决

    在使用jupyter notebook的过程中,创建了一个新的环境(anaconda中env)后遇到了这样一个问题,就是: 在jupyter notebook上运行程序,中间发现有一个python库未 ...

  2. Jupyter Notebook 快速入门

    Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言.在本文中,我们将介绍 Jupyter notebook 的主要特性,以 ...

  3. Cayley图数据库的可视化(Visualize)

    引入   在文章Cayley图数据库的简介及使用中,我们已经了解了Cayley图数据库的安装.数据导入以及进行查询等.   Cayley图数据库是Google开发的开源图数据库,虽然功能还没有Neo4 ...

  4. Jupyter Notebook入门教程

    Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言.在本文中,我们将介绍 Jupyter notebook 的主要特性,以 ...

  5. Jupyter Notebook 入门

    参考     Jupyter Notebook 快速入门 进阶 可看: Jupyter Notebook 的 27 个窍门,技巧和快捷键 Jupyter Notebook(此前被称为 IPython ...

  6. Jupyter Notebook 快速入门[转]

    Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言.在本文中,我们将介绍 Jupyter notebook 的主要特性,以 ...

  7. jupyter notebook初步使用

    Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言.在本文中,我们将介绍 Jupyter notebook 的主要特性,以 ...

  8. python金融与量化分析----Jupyter Notebook使用

    Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言.在本文中,我们将介绍 Jupyter notebook 的主要特性,以 ...

  9. Jupyter Notebook 下安装 PHP 内核

    我最近被强烈安利了 Jupyter Notebook 这个交互式笔记本.然后试用了它自带的 Python 内核后,这个应用整体给我的感觉很不错,就去搜索了下它所支持的其它内核 Jupyter Kern ...

  10. 高性能内存图数据库RedisGraph(一)

    作为一种简单.通用的数据结构,图可以表示数据对象之间的复杂关系.生物信息学.计算机网络和社交媒体等领域中产生的大量数据,往往是相互连接.关系复杂且低结构化的,这类数据对传统数据库而言十分棘手,一个简单 ...

随机推荐

  1. 我们开源了一个 Ant Design 的单元测试工具库

    我们是袋鼠云数栈 UED 团队,致力于打造优秀的一站式数据中台产品.我们始终保持工匠精神,探索前端道路,为社区积累并传播经验价值. 本文作者:佳岚 欢迎大家点一个小小的 Star ant-design ...

  2. Linux策略路由详解

    概述 在Linux中,我们通常使用route命令来做路由信息的管理.但是该命令仅仅只能用于基本路由信息的管理,面对功能更加强大的基于策略的路由机制,route命令就显得捉襟见肘.在传统路由算法中,只能 ...

  3. NutUI 4.0 正式发布!

    作者: 京东零售 NutUI NutUI 4.0 Github 地址:github.com/jdf2e/nutui NutUI 4.0 官网:nutui.jd.com 前言 技术日异月新.发展创新.持 ...

  4. 微信小程序之某个节点距离顶部和底部的距离 createSelectorQuery

    这个方法可以用来在上滑滚动的时候,让某一个区域置顶, 在下滑的时候,又变为原来的位置哈! <huadong :class="{'hident':isFixed}" id=&q ...

  5. 【学习日志】Java基本数据类型的自动装箱和拆箱

    // 测试代码 public static void main(String[] args) { Integer a = 1; Integer b = 2; Integer c = 3; Intege ...

  6. 机器学习算法(四): 基于支持向量机的分类预测(SVM)

    机器学习算法(四): 基于支持向量机的分类预测 本项目链接:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc 1.相关流程 支 ...

  7. 17.3 实现无管道反向CMD

    WSASocket无管道反向CMD,与无管道正向CMD相反,这种方式是在远程主机上创建一个TCP套接字,并绑定到一个本地地址和端口上.然后在本地主机上,使用WSASocket函数连接到远程主机的套接字 ...

  8. 轻量级按键动作识别模块(C语言)

    1.前言 继嵌入式(单片机)裸机 C 语言开发 + 按键扫描(模块分层/非阻塞式)文章后,原来的按键识别基本能满足大部分需求,但是对于双击和多击等多样化的功能需求并不能满足,因此对整个按键动作识别模块 ...

  9. flash8.ocx或其附件之一不能正确注册

    运行书中自带光盘中的程序,在该程序的readme说明中,提到这类错误,解决方式是: 因为是免安装程序,需要运行"setup"文件夹下的setup.exe文件,安装控件.在安装完成后 ...

  10. Python实现二叉查找

    搜索 搜索是在一个项目集合中找到一个特定项目的算法过程.搜索通常的答案是真的或假的,因为该项目是否存在. 搜索的几种常见方法:顺序查找.二分法查找.二叉树查找.哈希查找 二分法查找 二分查找又称折半查 ...