POJ-3279


经典【状态压缩】【DFS】题型

题目大意:有一个 M * N 的格子,每个格子可以翻转正反面,它们有一面是黑色,另一面是白色。黑色翻转之后变成白色,白色翻转之后则变成黑色。
游戏要做的是把所有的格子翻转为白色。不过因为牛蹄很大,所以每次翻转一个格子,与它上下左右相邻接的格子也会被翻转。
求用最小的步数完成时,每个格子的翻转次数。最小步数的解有多个时,输出字典序最小的一组;解不存在的话,则输出IMPOSSIBLE 题目样例:0表示白色,1表示黑色 1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1 题目思路:首先,同一个格子翻转两次就会恢复原状,所以多次翻转是多余的。此外,翻转的格子的集合相同的话,其次序是无关紧要的。 不妨先指定好最上面一行的翻转方法。此时,能翻转(1,1)的只剩下了(2,1),所以可以直接判断(2,1)是否需要翻转。类似的(2,1)~(2,N)都能这样判断,
如此反复下去就能确定所有格子的翻转方法,最后(M,1)~(M,N)并非全为白色,则意味着不存在可行的操作方法。 像这样,先确定第一行的翻转方式,然后可以很容易判断这样是否存在解以及解的最小步数是多少,这样将第一行的所有翻转方式都尝试一次就能求出整个问题的最小步数。这个算法中最上面
一行的翻转方式共有2^N种,复杂度为O(M * N * 2^N)
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <sstream>
#include <stack>
#include <map>
#include <queue>
#include<iomanip>
using namespace std;
const int maxn = 16;
int M, N;
const int dx[5] = { -1,0,0,0,1 };
const int dy[5] = { 0,-1,0,1,0 };
int tile[maxn][maxn];
int opt[maxn][maxn]; //保存最优解
int flip[maxn][maxn]; //保存中间结果 //查询(x,y)的颜色
int get(int x, int y)
{
int c = tile[x][y]; //注意这里要加上原来的状态
for (int d = 0; d < 5; d++) //查询周围四个以及自己的翻转次数
{
int x2 = x + dx[d], y2 = y + dy[d];
if (0 <= x2 && x2 < M && 0 <= y2 && y2 < N)
{
c += flip[x2][y2];
}
}
return c % 2; //奇数为1,偶数为0
} //求出第1行确定的情况下的最小操作次数
//不存在解得话,返回-1
int calc()
{
//求出从第2行开始的翻转方法
for (int i = 1; i < M; i++)
{
for (int j = 0; j < N; j++)
{
if (get(i - 1, j) != 0)
{
//如果(i- 1,j)是黑色的话,则必须翻转这个格子
flip[i][j] = 1;
}
}
}
//判断最后一行是否全白
for (int j = 0; j < N; j++)
{
//无解
if (get(M - 1, j) != 0) return -1;
} //统计翻转次数
int res = 0;
for (int i = 0; i < M; i++)
{
for (int j = 0; j < N; j++)
{
res += flip[i][j];
}
}
return res;
}
void solve()
{
int res = -1;
//按照字典序尝试第一行的所有可能性
for (int i = 0; i < 1 << N; i++) //i表示一个二进制数,用来枚举第1行的各种不同翻法,如0001就是只翻最后一个
{
memset(flip, 0, sizeof(flip));
for (int j = 0; j < N; j++)
{
flip[0][N - j - 1] = i >> j & 1;
/*eg:0011001
①j == 0; i >> j 即0011001 & 1 -> 1
②j == 1; i >> j 即0001100 & 1 -> 0
...
每次取出最后一位,存入flip中
*/
}
int num = calc(); //num记录翻转次数
if (num >= 0 && (res < 0 || res > num)) //如果找到一种可能并且所用步数更少的话,记下这种翻法
{
res = num;
memcpy(opt, flip, sizeof(flip));
}
}
if (res < 0)
//无解
printf("IMPOSSIBLE\n");
else //最后找到的就是最少的翻法,模拟一遍,然后输出
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)
printf("%d%c", opt[i][j], j + 1 == N ? '\n' : ' ');
}
int main()
{
cin >> M >> N;
for (int i = 0; i < M; i++) //数据输入
for (int j = 0; j < N; j++)
cin >> tile[i][j]; //0表示白色,1表示黑色
solve();
return 0;
}

POJ:3279-Fliptile【状态压缩】【DFS】的更多相关文章

  1. POJ 3279 Fliptile 状态压缩,思路 难度:2

    http://poj.org/problem?id=3279 明显,每一位上只需要是0或者1, 遍历第一行的所有取值可能,(1<<15,时间足够)对每种取值可能: 对于第0-n-2行,因为 ...

  2. 状态压缩+枚举 POJ 3279 Fliptile

    题目传送门 /* 题意:问最少翻转几次使得棋子都变白,输出翻转的位置 状态压缩+枚举:和之前UVA_11464差不多,枚举第一行,可以从上一行的状态知道当前是否必须翻转 */ #include < ...

  3. POJ 3279 Fliptile(翻格子)

    POJ 3279 Fliptile(翻格子) Time Limit: 2000MS    Memory Limit: 65536K Description - 题目描述 Farmer John kno ...

  4. poj 3311(状态压缩DP)

    poj  3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...

  5. poj 1185(状态压缩DP)

    poj  1185(状态压缩DP) 题意:在一个N*M的矩阵中,‘H'表示不能放大炮,’P'表示可以放大炮,大炮能攻击到沿横向左右各两格,沿纵向上下各两格,现在要放尽可能多的大炮使得,大炮之间不能相互 ...

  6. poj 3254(状态压缩DP)

    poj  3254(状态压缩DP) 题意:一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧,可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方格不能同时放牛,即牛与牛不能相 ...

  7. POJ.3279 Fliptile (搜索+二进制枚举+开关问题)

    POJ.3279 Fliptile (搜索+二进制枚举+开关问题) 题意分析 题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置( ...

  8. 【POJ 3279 Fliptile】开关问题,模拟

    题目链接:http://poj.org/problem?id=3279 题意:给定一个n*m的坐标方格,每个位置为黑色或白色.现有如下翻转规则:每翻转一个位置的颜色,与其四连通的位置都会被翻转,但注意 ...

  9. POJ 3279(Fliptile)题解

    以防万一,题目原文和链接均附在文末.那么先是题目分析: [一句话题意] 给定长宽的黑白棋棋盘摆满棋子,每次操作可以反转一个位置和其上下左右共五个位置的棋子的颜色,求要使用最少翻转次数将所有棋子反转为黑 ...

  10. POJ - 3279 Fliptile (枚举)

    http://poj.org/problem?id=3279 题意 一个m*n的01矩阵,每次翻转(x,y),那么它上下左右以及本身就会0变1,1变0,问把矩阵变成全0的,最小需要点击多少步,并输出最 ...

随机推荐

  1. 关于Delphi

    # 关于Delphi ··Delphi中使用的面向对象pascal编程语言. ··Pascal语言最初由瑞士苏黎士理工学院的尼古拉斯-沃斯(Niklaus Wirth)教授在1971年设计. ··19 ...

  2. 畅捷通T+与道一云对接集成报销信息列表连通凭证创建

    畅捷通T+与道一云对接集成获取报销信息列表连通凭证创建 数据源系统:道一云 在道一云坚实的技术基础上,道一云推出全新升级的2.0产品矩阵,分别是低码平台.智能门户.场景应用.基于云原生底座,为企业提供 ...

  3. 【Javaweb】了解link标签

    link标签的属性 标签就是定义文档和外部的关系,常见用途是链接样式表.通常指存在于head部分. 规定被连接文档的位置 <link rel='stylesheet' href='./ease. ...

  4. UNCTF-Crypto wp

    2020年 easy_rsa 题目 from Crypto.Util import number import gmpy2 from Crypto.Util.number import bytes_t ...

  5. Mysql不同数据库之间表结构同步

    开发环境的Mysql表结构做了修改,要同步到其他环境数据库中使用数据库管理工具JookDB的表结构同步功能就很方便.虽然Navicat也有这个功能但是有免费的当然是用免费的. 用JookDB添加数据库 ...

  6. 吉特日化MES-业务架构第一版图

  7. Shell下处理JSON数据工具向导

    目录 下载离线安装包 安装 源码包安装 选项及含义 JQ 程序代码演示在线平台 JQ 语法 基本过滤器 身份运算符 --- . 标识符-索引 --- .foo`, `.foo.bar 对象索引 --- ...

  8. 开源.NetCore通用工具库Xmtool使用连载 - 图像处理篇

    [Github源码] <上一篇> 介绍了Xmtool工具库中的扩展动态对象,今天我们继续为大家介绍其中的图像处理类库. 在我们的软件系统中,经常需要对图片进行各种各样的处理:例如最常见的头 ...

  9. 真的最后一次了——城院GO导航大作业迭代最终版

    真的!!!最后一次了!不骗人! 1.小程序的体验版二维码: 想体验的可以申请一下体验权限: 2.小程序目前功能介绍 1.首先进入是index页面:点击第一个是学校简介页面,第二个能直接跳到主程序的地图 ...

  10. MinIO客户端之diff

    MinIO提供了一个命令行程序mc用于协助用户完成日常的维护.管理类工作. 官方资料 mc diff 检查指定桶内对象清单的差异,注意不比较对象内容的差异,命令如下: ./mc diff local1 ...