森森开了一家快递公司,叫森森快递。因为公司刚刚开张,所以业务路线很简单,可以认为是一条直线上的N个城市,这些城市从左到右依次从0到(编号。由于道路限制,第i号城市(,)与第(号城市中间往返的运输货物重量在同一时刻不能超过C​i​​公斤。

公司开张后很快接到了Q张订单,其中j张订单描述了某些指定的货物要从S​j​​号城市运输到T​j​​号城市。这里我们简单地假设所有货物都有无限货源,森森会不定时地挑选其中一部分货物进行运输。安全起见,这些货物不会在中途卸货。

为了让公司整体效益更佳,森森想知道如何安排订单的运输,能使得运输的货物重量最大且符合道路的限制?要注意的是,发货时间有可能是任何时刻,所以我们安排订单的时候,必须保证共用同一条道路的所有货车的总重量不超载。例如我们安排1号城市到4号城市以及2号城市到4号城市两张订单的运输,则这两张订单的运输同时受2-3以及3-4两条道路的限制,因为两张订单的货物可能会同时在这些道路上运输。

输入格式:

输入在第一行给出两个正整数N和Q(2, 1),表示总共的城市数以及订单数量。

第二行给出(个数,顺次表示相邻两城市间的道路允许的最大运货重量C​i​​(,)。题目保证每个C​i​​是不超过2​31​​的非负整数。

接下来Q行,每行给出一张订单的起始及终止运输城市编号。题目保证所有编号合法,并且不存在起点和终点重合的情况。

输出格式:

在一行中输出可运输货物的最大重量。

输入样例:

10 6
0 7 8 5 2 3 1 9 10
0 9
1 8
2 7
6 3
4 5
4 2

输出样例:

7

样例提示:我们选择执行最后两张订单,即把5公斤货从城市4运到城市2,并且把2公斤货从城市4运到城市5,就可以得到最大运输量7公斤。

题意,给出一些区间,这些区间的最大值是所有小区间取最小,问怎么选择区间可以使取值最大。

参照大神的做法,首先给区间进行排序,按照右端点升序排序,相同的左端点升序,可以从左往右排开,

然后考虑两个相邻区间取组大值问题,如果两个区间是一个被另一个包含,显然大的取值受小的取值限制,也就是说选择小区间最优,比如一个区间是[2,7],另一个是[3,5],前一个区间所能取得的最大值是min([2,3],[3,4],[4,5],[5,6],[6,7]),而后一个区间是min([3,4],[4,5]),显然后一个区间的约束少,所取值大于等于前一个区间的取值。

如果两个区间是相交的,相交部分为b,那么设左边区间是a和b组成,右边是b和c组成,这个时候怎么判断,关键是看b的取值大小,

如果b最大,这个时候取min(a + c,b)(因为b是公共部分,如果b能承载的了a和c的和,那自然很好,如果不行,就得受b约束),

如果b最小,那不用说两个区间总的最多也就是取值b,如果b大小折中,那自然还是取b,比如是a>b>c,零右边区间取值c,中间段剩下b-c,总的就是b了。

所以综合后两种情况都是a+c>b,相交就取值min(a+c,b),

排序后可以从左往右一个一个求区间最大值,然后更新这个区间都减去这个值,表示后边与这个区间相交的受相交部分影响,所以要更新。

代码:

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#define inf 0x3f3f3f3f3f
using namespace std;
typedef pair<int,int> pa;
typedef long long ll;
int n,q;
ll ans;
int v[];
pa p[];
int tree[],lazy[];
bool cmp(const pa &a,const pa &b) {
if(a.second == b.second) return a.first < b.first;
return a.second < b.second;
}
void build(int l,int r,int t) {
lazy[t] = ;
if(l == r) tree[t] = v[l];
else {
int mid = (l + r) >> ;
build(l,mid,t << );
build(mid + ,r,t << | );
tree[t] = min(tree[t << ],tree[t << | ]);
}
}
void pushdown(int t) {
if(lazy[t] == ) return;
lazy[t << ] += lazy[t];
lazy[t << | ] += lazy[t];
tree[t << ] -= lazy[t];
tree[t << | ] -= lazy[t];
lazy[t] = ;
}
void update(int l,int r,int t,int L,int R,int d) {
if(l >= L && r <= R) tree[t] -= d,lazy[t] += d;
else {
pushdown(t);
int mid = (l + r) >> ;
if(mid >= L) update(l,mid,t << ,L,R,d);
if(mid < R) update(mid + ,r,t << | ,L,R,d);
tree[t] = min(tree[t << ],tree[t << | ]);
}
}
ll query(int l,int r,int t,int L,int R) {
if(l >= L && r <= R) return tree[t];
if(l > R || r < L) return inf;
int mid = (l + r) >> ;
ll d = inf;
pushdown(t);
if(mid >= L) d = min(d,query(l,mid,t << ,L,R));
if(mid < R) d = min(d,query(mid + ,r,t << | ,L,R));
tree[t] = min(tree[t << ],tree[t << | ]);
return d;
}
int main() {
scanf("%d%d",&n,&q);
for(int i = ;i < n - ;i ++) {
scanf("%d",&v[i]);
}
build(,n - ,);
for(int i = ;i < q;i ++) {
scanf("%d%d",&p[i].first,&p[i].second);
if(p[i].first > p[i].second) swap(p[i].first,p[i].second);
p[i].second --;
}
sort(p,p + q,cmp);
for(int i = ;i < q;i ++) {
ll d = query(,n - ,,p[i].first,p[i].second);
ans += d;
update(,n - ,,p[i].first,p[i].second,d);
}
printf("%lld",ans);
}

L3-017 森森快递 (30 分)的更多相关文章

  1. L3-2 森森快递 (30 分)(贪心+线段树/分块)

    题目链接:https://pintia.cn/problem-sets/1108203702759940096/problems/1108204121661857798 题目大意: 森森开了一家快递公 ...

  2. PAT L3-017. 森森快递

    L3-017. 森森快递 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 俞勇(上海交通大学) 森森开了一家快递公司,叫森森快递.因为 ...

  3. PTA 07-图5 Saving James Bond - Hard Version (30分)

    07-图5 Saving James Bond - Hard Version   (30分) This time let us consider the situation in the movie ...

  4. PTA 社交网络图中结点的“重要性”计算(30 分)

    7-12 社交网络图中结点的“重要性”计算(30 分) 在社交网络中,个人或单位(结点)之间通过某些关系(边)联系起来.他们受到这些关系的影响,这种影响可以理解为网络中相互连接的结点之间蔓延的一种相互 ...

  5. L3-015 球队“食物链” (30 分)

    L3-015 球队“食物链” (30 分)   某国的足球联赛中有N支参赛球队,编号从1至N.联赛采用主客场双循环赛制,参赛球队两两之间在双方主场各赛一场. 联赛战罢,结果已经尘埃落定.此时,联赛主席 ...

  6. PAT A1127 ZigZagging on a Tree (30 分)——二叉树,建树,层序遍历

    Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can ...

  7. 04-树6 Complete Binary Search Tree(30 分)

    title: 04-树6 Complete Binary Search Tree(30 分) date: 2017-11-12 14:20:46 tags: - 完全二叉树 - 二叉搜索树 categ ...

  8. PTA 7-2 二叉搜索树的结构(30 分)

    7-2 二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大 ...

  9. 1127 ZigZagging on a Tree (30 分)

    1127 ZigZagging on a Tree (30 分) Suppose that all the keys in a binary tree are distinct positive in ...

随机推荐

  1. centos7: iptables保存(配置完nginx的web规则后)

    centos7: iptables保存(配置完nginx的web规则后) 以本地虚拟机为例: 添加规则:入站规则 iptables -I INPUT -p tcp --dport 80 -j ACCE ...

  2. 查询ORACLE存储关联表

    SELECT DISTINCT * FROM user_sourceWHERE TYPE = 'PROCEDURE'AND upper(text) LIKE '%PS_KL_ABS_002_DATA% ...

  3. python模块——re模块(简单的计算器功能实现_eval版)

    #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = "loki" # Usage: Make a Diy Calcu ...

  4. LeetCode--225--用队列实现栈

    问题描述: 使用队列实现栈的下列操作: push(x) -- 元素 x 入栈 pop() -- 移除栈顶元素 top() -- 获取栈顶元素 empty() -- 返回栈是否为空 注意: 你只能使用队 ...

  5. Confluence 连接到一 LDAP 目录,权限对本地用户组设置为只读

    https://www.cwiki.us/display/CONFLUENCEWIKI/Connecting+to+an+LDAP+Directory

  6. POJ-1160 Post Office (DP+四边形不等式优化)

    题目大意:有v个村庄成直线排列,要建设p个邮局,为了使每一个村庄到离它最近的邮局的距离之和最小,应该怎样分配邮局的建设,输出最小距离和. 题目分析:定义状态dp(i,j)表示建设 i 个邮局最远覆盖到 ...

  7. 基础最短路(模板 dijkstra)

    Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多 ...

  8. 使用CLOB抛出数字或值错误异常

    今天在调试某个问题的时候,由于使用了很多循环,我需要都打印出来,试图使用clob整体处理之后再打印. 最后抛出此异常:数字或值错误. 网友解释如下: $ oerr ora 650206502, 000 ...

  9. navicat安装步骤

    Navicat安装

  10. SSO-基本概念

    什么是单点登录 单点登录(Single Sign On) 简称为sso,是目前流行的企业业务整合的解决方案之一.SSO的定义是在多个引用系统中用户只需要登录一次就可以访问所有相互信任的应用系统. 单点 ...