1111 Online Map (30 分)

Input our current position and a destination, an online map can recommend several paths. Now your job is to recommend two paths to your user: one is the shortest, and the other is the fastest. It is guaranteed that a path exists for any request.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (2≤N≤500), and M, being the total number of streets intersections on a map, and the number of streets, respectively. Then M lines follow, each describes a street in the format:

V1 V2 one-way length time

where V1 and V2 are the indices (from 0 to N−1) of the two ends of the street; one-way is 1 if the street is one-way from V1 to V2, or 0 if not; length is the length of the street; and time is the time taken to pass the street.

Finally a pair of source and destination is given.

Output Specification:

For each case, first print the shortest path from the source to the destination with distance D in the format:

Distance = D: source -> v1 -> ... -> destination

Then in the next line print the fastest path with total time T:

Time = T: source -> w1 -> ... -> destination

In case the shortest path is not unique, output the fastest one among the shortest paths, which is guaranteed to be unique. In case the fastest path is not unique, output the one that passes through the fewest intersections, which is guaranteed to be unique.

In case the shortest and the fastest paths are identical, print them in one line in the format:

Distance = D; Time = T: source -> u1 -> ... -> destination

Sample Input 1:

10 15
0 1 0 1 1
8 0 0 1 1
4 8 1 1 1
3 4 0 3 2
3 9 1 4 1
0 6 0 1 1
7 5 1 2 1
8 5 1 2 1
2 3 0 2 2
2 1 1 1 1
1 3 0 3 1
1 4 0 1 1
9 7 1 3 1
5 1 0 5 2
6 5 1 1 2
3 5

Sample Output 1:

Distance = 6: 3 -> 4 -> 8 -> 5
Time = 3: 3 -> 1 -> 5

Sample Input 2:

7 9
0 4 1 1 1
1 6 1 1 3
2 6 1 1 1
2 5 1 2 2
3 0 0 1 1
3 1 1 1 3
3 2 1 1 2
4 5 0 2 2
6 5 1 1 2
3 5

Sample Output 2:

Distance = 3; Time = 4: 3 -> 2 -> 5

分析:Dijkstra模板题,套2次就行了。

 /**
 * Copyright(c)
 * All rights reserved.
 * Author : Mered1th
 * Date : 2019-02-26-22.31.18
 * Description : A1111
 */
 #include<cstdio>
 #include<cstring>
 #include<iostream>
 #include<cmath>
 #include<algorithm>
 #include<string>
 #include<unordered_set>
 #include<map>
 #include<vector>
 #include<set>
 using namespace std;
 ;
 ;
 bool vis[maxn];
 int G[maxn][maxn],d[maxn],t[maxn],T[maxn][maxn];
 int n,m,st,ed;
 int pred[maxn],pret[maxn],mininter[maxn];
 vector<int> shortPath,fastPath;
 void dDijkstra(int s){
     fill(d,d+maxn,INF);
     fill(t,t+maxn,INF);
     d[s]=;
     t[s]=;
     memset(vis,,sizeof(vis));
     ;i<n;i++) pred[i]=i;
     ;i<n;i++){
         ,MIN=INF;
         ;j<n;j++){
             if(vis[j]==false && d[j]<MIN){
                 u=j;
                 MIN=d[j];
             }
         }
         ) return;
         vis[u]=true;
         ;v<n;v++){
             if(vis[v]==false && G[u][v]!=INF){
                 if(G[u][v]+d[u]<d[v]){
                     d[v]=d[u]+G[u][v];
                     t[v]=t[u]+T[u][v];
                     pred[v]=u;
                 }
                 else if(G[u][v]+d[u]==d[v]){
                     if(T[u][v]+t[u]<t[v]){
                         pred[v]=u;
                         t[v]=T[u][v]+t[u];
                     }
                 }
             }
         }
     }
     for(int i=ed;i!=st;i=pred[i]){
         shortPath.push_back(i);
     }
     shortPath.push_back(st);
 }

 void tDijkstra(int s){
     fill(t,t+maxn,INF);
     t[s]=;
     fill(mininter,mininter+maxn,);
     memset(vis,,sizeof(vis));
     ;i<n;i++) pret[i]=i;
     ;i<n;i++){
         ,MIN=INF;
         ;j<n;j++){
             if(vis[j]==false && t[j]<MIN){
                 u=j;
                 MIN=t[j];
             }
         }
         ) return;
         vis[u]=true;
         ;v<n;v++){
             if(vis[v]==false && T[u][v]!=INF){
                 if(T[u][v]+t[u]<t[v]){
                     t[v]=t[u]+T[u][v];
                     pret[v]=u;
                     mininter[v]=mininter[u]+;
                 }
                 else if(T[u][v]+t[u]==t[v]){
                     ){
                         pret[v]=u;
                         mininter[v]=mininter[u]+;
                     }
                 }
             }
         }
     }
     for(int i=ed;i!=st;i=pret[i]){
         fastPath.push_back(i);
     }
     fastPath.push_back(st);
 }

 int main(){
 #ifdef ONLINE_JUDGE
 #else
     freopen("1.txt", "r", stdin);
 #endif
     int u,v,o;
     cin>>n>>m;
     fill(G[],G[]+maxn*maxn,INF);
     fill(T[],T[]+maxn*maxn,INF);
     ;i<m;i++){
         cin>>u>>v>>o;
         cin>>G[u][v]>>T[u][v];
         ){
             G[v][u]=G[u][v];
             T[v][u]=T[u][v];
         }
     }
     cin>>st>>ed;
     dDijkstra(st);
     tDijkstra(st);
     if(shortPath!=fastPath){
         printf("Distance = %d: ",d[ed]);
         ;i>=;i--){
             printf("%d",shortPath[i]);
             ) printf(" -> ");
             else printf("\n");
         }
         printf("Time = %d: ",t[ed]);
         ;i>=;i--){
             printf("%d",fastPath[i]);
             ) printf(" -> ");
             else printf("\n");
         }
     }
     else{
         printf("Distance = %d; Time = %d: ",d[ed],t[ed]);
         ;i>=;i--){
             printf("%d",fastPath[i]);
             ) printf(" -> ");
             else printf("\n");
         }
     }
     ;
 }

1111 Online Map (30 分)的更多相关文章

  1. 【PAT甲级】1111 Online Map (30分)(dijkstra+路径记录)

    题意: 输入两个正整数N和M(N<=500,M<=N^2),分别代表点数和边数.接着输入M行每行包括一条边的两个结点(0~N-1),这条路的长度和通过这条路所需要的时间.接着输入两个整数表 ...

  2. 1111 Online Map (30)(30 分)

    Input our current position and a destination, an online map can recommend several paths. Now your jo ...

  3. PAT (Advanced Level) 1111. Online Map (30)

    预处理出最短路再进行暴力dfs求答案会比较好.直接dfs效率太低. #include<cstdio> #include<cstring> #include<cmath&g ...

  4. 1111. Online Map (30)

    Input our current position and a destination, an online map can recommend several paths. Now your jo ...

  5. PAT Advanced 1111 Online Map (30) [Dijkstra算法 + DFS]

    题目 Input our current position and a destination, an online map can recommend several paths. Now your ...

  6. PAT甲题题解-1111. Online Map (30)-PAT甲级真题(模板题,两次Dijkstra,同时记下最短路径)

    题意:给了图,以及s和t,让你求s到t花费的最短路程.最短时间,以及输出对应的路径.   对于最短路程,如果路程一样,输出时间最少的. 对于最短时间,如果时间一样,输出节点数最少的.   如果最短路程 ...

  7. PAT-1111 Online Map (30分) 最短路+dfs

    明天就要考PAT,为了应付期末已经好久没有刷题了啊啊啊啊,今天开了一道最短路,状态不是很好 1.没有读清题目要求,或者说没有读完题目,明天一定要注意 2.vis初始化的时候从1初始化到n,应该从0开始 ...

  8. PAT甲级——1111 Online Map (单源最短路经的Dijkstra算法、priority_queue的使用)

    本文章同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90041078   1111 Online Map (30 分) ...

  9. 1111 Online Map (30 分)

    1111. Online Map (30)Input our current position and a destination, an online map can recommend sever ...

随机推荐

  1. main方法原来只要放在public static类中就能跑,涨知识了

    接口中可以装在嵌套类对象. public interface ClassInterface { void howdy(); class Test implements ClassInterface { ...

  2. 太完美 TWM000极度精简版XP20130123终结美化版

    TWM000极度精简版XP20130123终结美化版:蛋蛋20130123终结版为蓝本,虫子提供的美化包进行了美化.此版经测试完美在Z77主板开启AHCI安装,此为最终版之美化版!LiteXPMH.i ...

  3. centos7 docker 安装showdoc

    可参考 http://www.showdoc.cc/help?page_id=65610 1.下载代码,并上传服务器 https://github.com/star7th/showdoc 解压之后我的 ...

  4. 一种简单的hook方法--LD_PRELOAD变量

    LD_PRELOAD这个变量允许你定义在程序运行时优先加载的动态链接库,从而在程序运行时的动态链接 下面程序的看一个例子-getuid.c //getuid.c #include<stdio.h ...

  5. MySQL配置参数详解

    # 以下选项会被MySQL客户端应用读取. # 注意只有mysql附带的客户端应用程序保证可以读取这段内容. # 如果你想你自己的MySQL应用程序获取这些值. # 需要在MySQL客户端库初始化的时 ...

  6. 为iOS设计:图形和性能

    在之前的文章里,我们探讨了基于多种不同技术来实现自定义的UIButton,当然不同的技术所涉及到的代码复杂度和难度也不一样.但是我也有意提到了基于不同方法的实现所体现出的性能表现也不一一相同. [在屏 ...

  7. 为什么在开发中大部分的时候都在用session而Application基本上都不去使用?

    问题描述 为什么在开发中大部分的时候都在用session而Application基本上都不去使用? 为什么在开发中大部分的时候都在用session而Application基本上都不去使用?为什么在开发 ...

  8. 2.2 linux中的信号分析

    信号: 信号是UNIX系统响应某些状况而产生的事件,进程在接收到信号时会采取相应的行动. 信号是因为某些错误条件而产生的,比如内存段冲突.浮点处理器错误或者非法指令等. 信号是在软件层次上对中断的一种 ...

  9. 放苹果问题 DP计数 m个苹果放在n个盘子里,苹果,盘子相同,盘子可为空

    详细的解释放苹果问题的链接:苹果可相同可不同,盘子可相同可不同,盘子可空和不可空,都有详细的说明··· http://www.cnblogs.com/celia01/archive/2012/02/1 ...

  10. 状压dp2

    2018年全国多校算法寒假训练营练习比赛(第二场) https://www.nowcoder.com/acm/contest/74/F 上一篇状压dp例题由于每个位置都含有一个非负数,所以不需要判断能 ...