题目链接:http://poj.org/problem?id=1180

Description

There is a sequence of N jobs to be processed on one machine. The jobs are numbered from 1 to N, so that the sequence is 1,2,..., N. The sequence of jobs must be partitioned into one or more batches, where each batch consists of consecutive jobs in the sequence. The processing starts at time 0. The batches are handled one by one starting from the first batch as follows. If a batch b contains jobs with smaller numbers than batch c, then batch b is handled before batch c. The jobs in a batch are processed successively on the machine. Immediately after all the jobs in a batch are processed, the machine outputs the results of all the jobs in that batch. The output time of a job j is the time when the batch containing j finishes.

A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs, the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153.

You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost.

Input

Your program reads from standard input. The first line contains the number of jobs N, 1 <= N <= 10000. The second line contains the batch setup time S which is an integer, 0 <= S <= 50. The following N lines contain information about the jobs 1, 2,..., N in that order as follows. First on each of these lines is an integer Ti, 1 <= Ti <= 100, the processing time of the job. Following that, there is an integer Fi, 1 <= Fi <= 100, the cost factor of the job.

Output

Your program writes to standard output. The output contains one line, which contains one integer: the minimum possible total cost.

Sample Input

5
1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

题意:

有N个工作排成一个序列,分别编号为1,2,3,…,N;

这些工作,被分成若干批("one or more"),并且满足:

  1. 每一批内的工作编号是连续的,机器处理“批(batchs)”的顺序按照序列的顺序来
  2. 处理一批所用时间为:预处理时间(setup time)S + 处理包内每个工作所耗时间之和
  3. 对于一个工作,它的完成时间O[i] = 开始处理它所在批的时刻t + S + 处理包内每个工作所耗时间之和
  4. 机器处理完一批,就立即同时输出该批内所有工作的结果

对于每个工作我们知道:

  1. 处理这项工作所耗时间T[i]
  2. 成本因子F[i](对于每项工作,它所要耗费的成本为O[i]*F[i])

现在要求,找到一个工作划分方案,使得成本耗费最少,输出该成本耗费。

题解:

设dp[i]代表从第i项工作到第N项工作需要耗费的最小成本;

设 $ {\rm{Tsum}}\left[ i \right] = \sum\limits_{k = i}^N {{\rm{T}}\left[ k \right]} {\rm{,}}\;\;{\rm{Fsum}}\left[ i \right] = \sum\limits_{k = i}^N {{\rm{F}}\left[ k \right]} $ ;

状态转移方程为:dp[i] = min{ dp[k] + ( S + Tsum[i] - Tsum[k] ) * Fsum[i] },i<k≤N

也就是说执行第k个batch的花费,看成不只包括第k个batch内所有工作的成本花费,同时还包括因执行第k个batch而延迟执行后续其他batch所增加的成本耗费。

那么对于计算dp[i]时中k可能选择的两个点a,b(i<a<b≤N),若有:

dp[b] + ( S + Tsum[i] - Tsum[b] ) * Fsum[i] ≤ dp[a] + ( S + Tsum[i] - Tsum[a] ) * Fsum[i]

则可以说b点优于a点;

对上式变形可得:

( dp[a] - dp[b] ) / ( Tsum[a] - Tsum[b] ) ≥ Fsum[i]

设g(a,b) = ( dp[a] - dp[b] ) / ( Tsum[a] - Tsum[b] ),则有

b点优于a点 <=> g(a,b) ≥ Fsum[i];

b点劣于a点 <=> g(a,b) < Fsum[i];

另外还有g(a,b) ≥ g(b,c),b必然被淘汰。

然后就可以进行斜率DP优化了(具体怎么优化参考之前的几篇文章HDU3507HDU2993HDU2829)。

AC代码:

#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=+; int N,S;
int T[maxn],F[maxn];
int Tsum[maxn],Fsum[maxn];
int dp[maxn];
int q[maxn],head,tail; double g(int a,int b)
{
return double(dp[a]-dp[b])/double(Tsum[a]-Tsum[b]);
} int main()
{
scanf("%d%d",&N,&S);
for(int i=;i<=N;i++) scanf("%d%d",&T[i],&F[i]); Tsum[N+]=Fsum[N+]=;
for(int i=N;i>=;i--) Tsum[i]=Tsum[i+]+T[i], Fsum[i]=Fsum[i+]+F[i]; head=tail=;
q[tail++]=N+;
dp[N+]=;
for(int i=N,a,b;i>=;i--)
{
while(head+<tail)
{
b=q[head], a=q[head+];
if(g(a,b)<Fsum[i]) head++;
else break;
}
int k=q[head];
dp[i]=dp[k]+(S+Tsum[i]-Tsum[k])*Fsum[i]; while(head+<tail)
{
b=q[tail-], a=q[tail-];
if(g(a,b)>=g(b,i)) tail--;
else break;
}
q[tail++]=i;
} printf("%d\n",dp[]);
}

POJ 1180 - Batch Scheduling - [斜率DP]的更多相关文章

  1. poj 1180 Batch Scheduling (斜率优化)

    Batch Scheduling \(solution:\) 这应该是斜率优化中最经典的一道题目,虽然之前已经写过一道 \(catstransport\) 的题解了,但还是来回顾一下吧,这道题其实较那 ...

  2. POJ 1180 Batch Scheduling

    BTW: 刚在图书馆借了本算法艺术与信息学竞赛. 我多次有买这本书的冲动, 但每次在试看之后就放弃了, 倒不是因为书太难, 而是写的实在是太差. 大家对这本书的评价很高, 我觉得多是因为书的内容, 而 ...

  3. POJ 1180 Batch Scheduling(斜率优化DP)

    [题目链接] http://poj.org/problem?id=1180 [题目大意] N个任务排成一个序列在一台机器上等待完成(顺序不得改变), 这N个任务被分成若干批,每批包含相邻的若干任务. ...

  4. poj 1180:Batch Scheduling【斜率优化dp】

    我会斜率优化了!这篇讲的超级棒https://blog.csdn.net/shiyongyang/article/details/78299894?readlog 首先列个n方递推,设sf是f的前缀和 ...

  5. POJ 1180 Batch Scheduling (dp,双端队列)

    #include <iostream> using namespace std; + ; int S, N; int T[MAX_N], F[MAX_N]; int sum_F[MAX_N ...

  6. POJ 1260 Pearls (斜率DP)题解

    思路: 直接DP也能做,这里用斜率DP. dp[i] = min{ dp[j] + ( sum[i] - sum[j] + 10 )*pr[i]} ; k<j<i  =>  dp[j ...

  7. POJ1180 Batch Scheduling -斜率优化DP

    题解 将费用提前计算可以得到状态转移方程: $F_i = \min(F_j + sumT_i * (sumC_i - sumC_j) + S \times (sumC_N - sumC_j)$ 把方程 ...

  8. [kuangbin带你飞]专题二十 斜率DP

            ID Origin Title   20 / 60 Problem A HDU 3507 Print Article   13 / 19 Problem B HDU 2829 Lawr ...

  9. [POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP

    POJ1180 Batch Scheduling Description There is a sequence of N jobs to be processed on one machine. T ...

随机推荐

  1. OpenVPN多处理之-多队列TUN多实例

    两年前我以前提到了多个OpenVPN共享一个tun虚拟网卡,旨在降低管理开销和切换开销,由于我讨厌在外面对一大堆网卡做Bridge或者Bonding,除了初衷不同,其实的关于TUN的进展一直没有偏离我 ...

  2. 8 -- 深入使用Spring -- 7...3 让Spring管理控制器

    8.7.3 让Spring管理控制器 让Spring容器来管理应用中的控制器,可以充分利用Spring的IoC特性,但需要将配置Struts 2 的控制器部署在Spring容器中,因此导致配置文件冗余 ...

  3. 树莓派(Raspberry Pi)USB无线网卡自动连接,二代B

    Raspberry Pi 使用USB无线网卡的时候不会因为路由重启而掉线. #!/bin/bash while true ; do if ifconfig wlan0 | grep -q " ...

  4. 初试WebSocket构建聊天程序

    上一篇文章中使用了Ajax long polling实现了一个简单的聊天程序,对于web实时通信,今天就来试用一下基于WebSocket的长连接方式. WebSocket简介 为了增强web通信的功能 ...

  5. docker in centos error

    centos 7 Docker 启动了一个web服务 但是启动时 报 WARNING: IPv4 forwarding is disabled. Networking will not work. 网 ...

  6. Spring和junit测试之配置文件路径

    本人在测试一个方法时需要加载XML配置文件,spring提供了相应的方法,就小小研究了下,在此记录下具体的过程,方便初学者和自己日后回顾. Spring容器最基本的接口就是BeanFactory. B ...

  7. HttpClient 通信工具类

    package com.taotao.web.service; import java.util.ArrayList; import java.util.List; import java.util. ...

  8. webform的学习(2)

    突然回想一下,两周之后放假回家,三周之后重返学习,四周之后就要真正的面对社会,就这样有好多的舍不得在脑海中回旋,但是又是兴奋的想快点拥有自己的小生活,似乎太多的人在说程序的道路甚是艰难,我不知道我的选 ...

  9. 深入理解Auto Layout 第一弹

    本文转载至 http://zhangbuhuai.com/2015/07/16/beginning-auto-layout-part-1/ By 张不坏 2015-07-16 更新日期:2015-07 ...

  10. linux c++环境

    set expandtab set autoindent set smartindent