Cow Exhibition

Time Limit: 1000MS Memory Limit: 65536K

Total Submissions: 10949 Accepted: 4344

Description

“Fat and docile, big and dumb, they look so stupid, they aren’t much

fun…”

- Cows with Guns by Dana Lyons

The cows want to prove to the public that they are both smart and fun. In order to do this, Bessie has organized an exhibition that will be put on by the cows. She has given each of the N (1 <= N <= 100) cows a thorough interview and determined two values for each cow: the smartness Si (-1000 <= Si <= 1000) of the cow and the funness Fi (-1000 <= Fi <= 1000) of the cow.

Bessie must choose which cows she wants to bring to her exhibition. She believes that the total smartness TS of the group is the sum of the Si’s and, likewise, the total funness TF of the group is the sum of the Fi’s. Bessie wants to maximize the sum of TS and TF, but she also wants both of these values to be non-negative (since she must also show that the cows are well-rounded; a negative TS or TF would ruin this). Help Bessie maximize the sum of TS and TF without letting either of these values become negative.

Input

  • Line 1: A single integer N, the number of cows

  • Lines 2..N+1: Two space-separated integers Si and Fi, respectively the smartness and funness for each cow.

    Output

  • Line 1: One integer: the optimal sum of TS and TF such that both TS and TF are non-negative. If no subset of the cows has non-negative TS and non- negative TF, print 0.

Sample Input

5

-5 7

8 -6

6 -3

2 1

-8 -5

Sample Output

8

Hint

OUTPUT DETAILS:

Bessie chooses cows 1, 3, and 4, giving values of TS = -5+6+2 = 3 and TF

= 7-3+1 = 5, so 3+5 = 8. Note that adding cow 2 would improve the value

of TS+TF to 10, but the new value of TF would be negative, so it is not

allowed.

看了别人博客才会写。01背包中体积出现负数怎么办?,整体加上100000,就行了,dp[100000]就和dp[0]一样,表示总体积为0.体积为负数的物品,要从小到大,和正数的物品反过来,因为如果和正数的物品一样的顺序,最大体积会增大,最大体积是不变的。

#include <iostream>
#include <algorithm>
#include <string.h>
#include <stdlib.h>
#include <math.h> using namespace std;
#define MAX 99999999
int dp[200005];
int w[105];
int v[105];
int n;
int main()
{
int ans;
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i<=200000;i++)
dp[i]=-MAX;
ans=0;
for(int i=1;i<=n;i++)
scanf("%d%d",&w[i],&v[i]); dp[100000]=0;
for(int i=1;i<=n;i++)
{
if(w[i]<0&&v[i]<0)
continue;
if(w[i]>0)
{
for(int j=200000;j>=w[i];j--)
{
if(dp[j-w[i]]!=-MAX)
{
dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
}
}
}
else
{
for(int j=w[i];j<=200000+w[i];j++)
{
if(dp[j-w[i]]!=MAX)
{
dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
}
}
}
}
ans=-MAX;
for(int i=100000;i<=200000;i++)
{
if(dp[i]>=0)
ans=max(ans,dp[i]+i-100000);
}
printf("%d\n",ans);
}
return 0;
}

POJ-2184 Cow Exhibition(01背包变形)的更多相关文章

  1. [POJ 2184]--Cow Exhibition(0-1背包变形)

    题目链接:http://poj.org/problem?id=2184 Cow Exhibition Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  2. POJ 2184 Cow Exhibition (01背包变形)(或者搜索)

    Cow Exhibition Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10342   Accepted: 4048 D ...

  3. POJ 2184 Cow Exhibition (01背包的变形)

    本文转载,出处:http://www.cnblogs.com/Findxiaoxun/articles/3398075.html 很巧妙的01背包升级.看完题目以后很明显有背包的感觉,然后就往背包上靠 ...

  4. poj 2184 Cow Exhibition(背包变形)

    这道题目和抢银行那个题目有点儿像,同样涉及到包和物品的转换. 我们将奶牛的两种属性中的一种当作价值,另一种当作花费.把总的价值当作包.然后对于每一头奶牛进行一次01背包的筛选操作就行了. 需要特别注意 ...

  5. POJ 2184 Cow Exhibition 01背包

    题意就是给出n对数 每对xi, yi 的值范围是-1000到1000 然后让你从中取若干对 使得sum(x[k]+y[k]) 最大并且非负   且 sum(x[k]) >= 0 sum(y[k] ...

  6. PKU 2184 Cow Exhibition 01背包

    题意: 有一些牛,每头牛有一个Si值,一个Fi值,选出一些牛,使得max( sum(Si+Fi) ) 并且 sum(Si)>=0, sum(Fi)>=0 思路: 随便选一维做容量(比如Fi ...

  7. POJ 2184 Cow Exhibition(背包)

    希望Total Smart和Totol Funess都尽量大,两者之间的关系是鱼和熊掌.这种矛盾和背包的容量和价值相似. dp[第i只牛][j = 当前TotS] = 最大的TotF. dp[i][j ...

  8. POJ 2184 Cow Exhibition【01背包+负数(经典)】

    POJ-2184 [题意]: 有n头牛,每头牛有自己的聪明值和幽默值,选出几头牛使得选出牛的聪明值总和大于0.幽默值总和大于0,求聪明值和幽默值总和相加最大为多少. [分析]:变种的01背包,可以把幽 ...

  9. poj 2184 Cow Exhibition(dp之01背包变形)

    Description "Fat and docile, big and dumb, they look so stupid, they aren't much fun..." - ...

随机推荐

  1. Batch Normalization 学习笔记

    原文:http://blog.csdn.net/happynear/article/details/44238541 今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他 ...

  2. 标准JSON格式定义与解析注意点

    标准JSON格式定义与解析注意点 在JS.IOS.Android中都内置了JSON的序列化.反序列化SDK.JEE中也可以使用第三方的JSON解析库,如GSON.虽然在JSON格式被定义出来的时候并没 ...

  3. JVM虚拟机内存模型以及GC机制

    JAVA堆的描述如下: 内存由 Perm 和 Heap 组成. 其中 Heap = {Old + NEW = { Eden , from, to } } JVM内存模型中分两大块,一块是 NEW Ge ...

  4. Splash Lua 脚本

    Splash 可以通过 Lua 脚本执行一系列渲染操作,这样我们就可以用 Splash 来模拟浏览器的操作了,Splash Lua 基础语法如下: function main(splash, args ...

  5. 深入浅出MongoDB应用实战开发

    写在前面的话: 这篇文章会有点长,谨此记录自己昨天一整天看完<深入浅出MongoDB应用实战开发>视频时的笔记.只是在开始,得先抛出一个困扰自己很长时间的问题:“带双引号的和不带双引号的j ...

  6. JDK下载链接

    所有的存档页面 http://www.oracle.com/technetwork/cn/java/archive-139210-zhs.html

  7. 中间件系列三 RabbitMQ之交换机的四种类型和属性

    概述本文介绍RabbitMQ中交换机类型和属性,主要内容如下: 交换机的作用交换机的类型:Direct exchange(直连交换机).Fanout exchange(扇型交换机).Topic exc ...

  8. sqlserver添加查询 表、字段注释(转)

    环境:xp sp3,sql server2008 .sqlserver用语句给表注释 EXECUTE sp_addextendedproperty N'MS_Description', N'表注释', ...

  9. IOS设计模式第五篇之装饰设计模式的代理设计模式

    版权声明:原创作品,谢绝转载!否则将追究法律责任. 代理: 另一个装饰设计模式,代理,是一个代表或者协调另一个对象的行为机制.例如当你用一个tableView,你必须实现他里面的一个tableView ...

  10. Linux 下如何安装 .rpm 文件

    执行以下命令安装: rpm -i your-file-name.rpm 详细的可参考: http://os.51cto.com/art/201001/177866.htm