tensorflow 模型前向传播 保存ckpt tensorbard查看 ckpt转pb pb 转snpe dlc 实例
参考:
TensorFlow 自定义模型导出:将 .ckpt 格式转化为 .pb 格式
TensorFlow 模型保存与恢复
tensorflow 模型前向传播 保存ckpt tensorbard查看 ckpt转pb pb 转snpe dlc 实例
log文件


输入节点 图像高度 图像宽度 图像通道数
input0 6,6,3
输出节点
--out_node add
snpe-tensorflow-to-dlc --graph ./simple_snpe_log/model200.pb -i input0 6,6,3 --out_node add
#coding:utf-8
#http://blog.csdn.net/zhuiqiuk/article/details/53376283
#http://blog.csdn.net/gan_player/article/details/77586489
from __future__ import absolute_import, unicode_literals
import tensorflow as tf
import shutil
import os.path
from tensorflow.python.framework import graph_util
import mxnet as mx
import numpy as np
import random
import cv2
from time import sleep
from easydict import EasyDict as edict
import logging
import math
import tensorflow as tf
import numpy as np def FullyConnected(input, fc_weight, fc_bias, name):
fc = tf.matmul(input, fc_weight) + fc_bias
return fc def inference(body, name_class,outchannel):
wkernel = 3
inchannel = body.get_shape()[3].value
conv_weight = np.arange(wkernel * wkernel * inchannel * outchannel,dtype=np.float32).reshape((outchannel,inchannel,wkernel,wkernel))
conv_weight = conv_weight / (outchannel*inchannel*wkernel*wkernel)
print("conv_weight ", conv_weight)
conv_weight = conv_weight.transpose(2,3,1,0)
conv_weight = tf.Variable(conv_weight, dtype=np.float32, name = "conv_weight")
body = tf.nn.conv2d(body, conv_weight, strides=[1, 1, 1, 1], padding='SAME', name = "conv0")
conv = body
conv_shape = body.get_shape()
dim = conv_shape[1].value * conv_shape[2].value * conv_shape[3].value
body = tf.reshape(body, [1, dim], name = "fc0")
fc_weight = np.ones((dim, name_class))
fc_bias = np.zeros((1, name_class))
fc_weight = tf.Variable(fc_weight, dtype=np.float32, name="fc_weight")
fc_bias = tf.Variable(fc_bias, dtype=np.float32, name="fc_bias")
# tf.constant(100,dtype=np.float32, shape=(body.get_shape()[1] * body.get_shape()[2] * body.get_shape()[3], name_class])
# fc_bias = tf.constant(10, dtype=np.float32, shape=(1, name_class])
body = FullyConnected(body, fc_weight, fc_bias, "fc0")
return conv, body export_dir = "simple_snpe_log"
def saveckpt():
height = 6
width = 6
inchannel = 3
outchannel = 3
graph = tf.get_default_graph()
with tf.Graph().as_default():
input_image = tf.placeholder("float", [1, height, width, inchannel], name = "input0")
conv, logdit = inference(input_image,10,outchannel)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
img = np.arange(height * width * inchannel, dtype=np.float32).reshape((1,inchannel,height,width)) \
/ (1 * inchannel * height * width) * 255.0 - 127.5
print("img",img)
img = img.transpose(0,2,3,1)
import time
since = time.time()
fc = sess.run(logdit,{input_image:img})
conv = sess.run(conv, {input_image: img})
time_elapsed = time.time() - since
print("tf inference time ", str(time_elapsed))
print("conv", conv.transpose(0, 2, 3, 1))
print("fc", fc)
#np.savetxt("tfconv.txt",fc)
#print( "fc", fc.transpose(0,3,2,1))
#np.savetxt("tfrelu.txt",fc.transpose(0,3,2,1)[0][0]) # #save ckpt
export_dir = "simple_snpe_log"
saver = tf.train.Saver()
step = 200
# if os.path.exists(export_dir):
# os.system("rm -rf " + export_dir)
if not os.path.isdir(export_dir): # Create the log directory if it doesn't exist
os.makedirs(export_dir) checkpoint_file = os.path.join(export_dir, 'model.ckpt')
saver.save(sess, checkpoint_file, global_step=step) def LoadModelToTensorBoard():
graph = tf.get_default_graph()
checkpoint_file = os.path.join(export_dir, 'model.ckpt-200.meta')
saver = tf.train.import_meta_graph(checkpoint_file)
print(saver)
summary_write = tf.summary.FileWriter(export_dir , graph)
print(summary_write) def ckptToPb():
checkpoint_file = os.path.join(export_dir, 'model.ckpt-200.meta')
ckpt = tf.train.get_checkpoint_state(export_dir)
print("model ", ckpt.model_checkpoint_path)
saver = tf.train.import_meta_graph(ckpt.model_checkpoint_path +'.meta')
graph = tf.get_default_graph()
with tf.Session() as sess:
saver.restore(sess,ckpt.model_checkpoint_path)
height = 6
width = 6
input_image = tf.get_default_graph().get_tensor_by_name("input0:0")
fc0_output = tf.get_default_graph().get_tensor_by_name("add:0")
sess.run(tf.global_variables_initializer())
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess, graph.as_graph_def(), ['add'])
model_name = os.path.join(export_dir, 'model200.pb')
with tf.gfile.GFile(model_name, "wb") as f:
f.write(output_graph_def.SerializeToString()) def PbTest():
with tf.Graph().as_default():
output_graph_def = tf.GraphDef()
output_graph_path = os.path.join(export_dir,'model200.pb')
with open(output_graph_path, "rb") as f:
output_graph_def.ParseFromString(f.read())
tf.import_graph_def(output_graph_def, name="") with tf.Session() as sess:
tf.initialize_all_variables().run()
height = 6
width = 6
inchannel = 3
outchannel = 3
input_image = tf.get_default_graph().get_tensor_by_name("input0:0")
fc0_output = tf.get_default_graph().get_tensor_by_name("add:0")
conv = tf.get_default_graph().get_tensor_by_name("conv0:0") img = np.arange(height * width * inchannel, dtype=np.float32).reshape((1,inchannel,height,width)) \
/ (1 * inchannel * height * width) * 255.0 - 127.5
print("img",img)
img = img.transpose(0,2,3,1)
import time
since = time.time()
fc0_output = sess.run(fc0_output,{input_image:img})
conv = sess.run(conv, {input_image: img})
time_elapsed = time.time() - since
print("tf inference time ", str(time_elapsed))
print("conv", conv.transpose(0, 2, 3, 1))
print("fc0_output", fc0_output) if __name__ == '__main__': saveckpt() #1
LoadModelToTensorBoard()#2
ckptToPb()#3
PbTest()#
tensorflow 模型前向传播 保存ckpt tensorbard查看 ckpt转pb pb 转snpe dlc 实例的更多相关文章
- Tensorflow模型加载与保存、Tensorboard简单使用
先上代码: from __future__ import absolute_import from __future__ import division from __future__ import ...
- TensorFlow模型加载与保存
我们经常遇到训练时间很长,使用起来就是Weight和Bias.那么如何将训练和测试分开操作呢? TF给出了模型的加载与保存操作,看了网上都是很简单的使用了一下,这里给出一个神经网络的小程序去测试. 本 ...
- 利用tensorflow实现前向传播
import tensorflow as tf w1 = tf.Variable(tf.random_normal((2, 3), stddev=1, seed=1))w2 = tf.Variable ...
- Tensorflow笔记——神经网络图像识别(一)前反向传播,神经网络八股
第一讲:人工智能概述 第三讲:Tensorflow框架 前向传播: 反向传播: 总的代码: #coding:utf-8 #1.导入模块,生成模拟数据集 import t ...
- tensorflow模型的保存与恢复,以及ckpt到pb的转化
转自 https://www.cnblogs.com/zerotoinfinity/p/10242849.html 一.模型的保存 使用tensorflow训练模型的过程中,需要适时对模型进行保存,以 ...
- tensorflow模型持久化保存和加载
模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分 ...
- Tensorflow模型变量保存
Tensorflow:模型变量保存 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tensorflow1.4.0 pyt ...
- tensorflow模型持久化保存和加载--深度学习-神经网络
模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分 ...
- 超详细的Tensorflow模型的保存和加载(理论与实战详解)
1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: ...
随机推荐
- Linux 索引节点(inode)详解
参考文章:http://www.ruanyifeng.com/blog/2011/12/inode.html
- Socket网络编程--FTP客户端(2)(Windows)
上一篇FTP客户端讲到如果制作一个简单的FTP客户端,功能实现了,但是后面我们发现了问题,就是FTP是使用明文进行操作的.对于普通情况来说就无所谓了.但有时候要安全的一点的话,就应该使用FTP的安全版 ...
- Zlib库的安装与使用
在实际应用中经常会遇到要压缩数据的问题,常见的压缩格式有zip和rar,而Linux下那就更多了,bz2,gz,xz什么的都有,单单Linux下的解压和压缩命令就有好多呢?没有什么好不好的.查了资料, ...
- 关于chrome的开发调试方式
chrome://inspect/#devices 调试移动设备app chrome://version 查看chrome浏览器版本信息 chrome://components/ 查看组件信息 上面的 ...
- 非常详尽的 Shiro 架构解析
Shiro是什么? Apache Shiro是一个强大而灵活的开源安全框架,它干净利落地处理身份认证,授权,企业会话管理和加密. Apache Shiro的首要目标是易于使用和理解.安全有时候是很复杂 ...
- GDB 调试解析
GDB(GNU Debugger)是一个强大的命令行调试工具.大家知道命令行的强大就是在于,其可以形成执行序 列,形成脚本.UNIX下的软件全是命令行的,这给程序开发提代供了极大的便利,命令行软件的优 ...
- 每日英语:American Cities May Have Hit 'Peak Office'
Despite some hype and a few regional exceptions, the construction of office towers and suburban offi ...
- 【转帖】(一)unity4.6Ugui中文教程文档-------概要
原帖至上,移步请戳:(一)unity4.6Ugui中文教程文档-------概要 unity4.6中的一个重要的升级就是GUI ,也把它称为UGUI ,废话我不多说,大家可以百度了解一下. 虽然现在处 ...
- Linux命令之stty
用途说明 stty命令用于显示和修改终端行设置(change and print terminal line settings). 常用参数 stty命令不带参数可以打印终端行设置,加上-a参数可以打 ...
- Java后台测试技巧
[本文出自天外归云的博客园] 问题 很多测试是和后台代码逻辑相关的,比如: 接口测试 接口文档里面包含了接口的url.用途.一些上行参数和下行参数的描述信息. 但是要想知道这些参数取值的来龙去脉,还是 ...