使用方法:
1、创建一个互斥器:CreateMutex;
2、打开一个已经存在的互斥器:OpenMutex;
3、获得互斥器的拥有权:WaitForSingleObject、WaitForMultipleObjects 等一类等待的函数……(可能造成阻塞);
4、释放互斥器的拥有权:ReleaseMutex;
5、关闭互斥器:CloseHandle;

函数原型:

HANDLE WINAPI CreateMutex( __in_opt LPSECURITY_ATTRIBUTES lpMutexAttributes, __in BOOL bInitialOwner, __in_opt LPCTSTR lpName );
1
2
3
4
5
6
7
8
9
lpMutexAttributes : 第一个参数表示安全控制,一般直接传入NULL。
 
bInitialOwner第二个参数用来确定互斥量的初始拥有者。
 
      如果传入TRUE表示互斥量对象内部会记录创建它的线程的线程ID号并将递归计数设置为1,由于该线程ID非零,所以互斥量处于未触发状态,表示互斥量为创建线程拥有。 
 
如果传入FALSE,那么互斥量对象内部的线程ID号将设置为NULL,递归计数设置为0,这意味互斥量不为任何线程占用,处于触发状态。
 
lpName第三个参数用来设置互斥量的名称,在多个进程中的线程就是通过名称来确保它们访问的是同一个互斥量。

※ 命名标准:Mutex 可以跨进程使用,所以其名称对整个系统而言是全局的,所以命名不要过于普通,类似:Mutex、Object 等。
最好想一些独一无二的名字等!

固有特点(优点+缺点):
1、是一个系统核心对象,所以有安全描述指针,用完了要 CloseHandle 关闭句柄,这些是内核对象的共同特征;
2、因为是核心对象,所以执行速度会比 Critical Sections 慢几乎100倍的时间(当然只是相比较而言);
3、因为是核心对象,而且可以命名,所以可以跨进程使用;
4、Mutex 使用正确的情况下不会发生死锁;
5、在“等待”一个 Mutex 的时候,可以指定“结束等待”的时间长度;
6、可以检测到当前拥有互斥器所有权的线程是否已经退出!Wait……函数会返回:WAIT_ABANDONED

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#include <iostream>
#include <windows.h>
using namespace std;
 
HANDLE  g_hMutex = NULL;
const int g_Number = 3;
DWORD WINAPI ThreadProc1(__in  LPVOID lpParameter);
DWORD WINAPI ThreadProc2(__in  LPVOID lpParameter);
DWORD WINAPI ThreadProc3(__in  LPVOID lpParameter);
 
int main()
{
    g_hMutex = CreateMutex(NULL,FALSE,NULL);
    //TRUE代表主线程拥有互斥对象 但是主线程没有释放该对象  互斥对象谁拥有 谁释放 
    // FLASE代表当前没有线程拥有这个互斥对象
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
    HANDLE hThread[ g_Number ] = {0};
    int first = 1, second = 2, third = 3;
    hThread[ 0 ] = CreateThread(NULL,0,ThreadProc1,(LPVOID)first,0,NULL);
    hThread[ 1 ] = CreateThread(NULL,0,ThreadProc2,(LPVOID)second,0,NULL);
    hThread[ 2 ] = CreateThread(NULL,0,ThreadProc3,(LPVOID)third,0,NULL);
 
    WaitForMultipleObjects(g_Number,hThread,TRUE,INFINITE);
    CloseHandle( hThread[0] );
    CloseHandle( hThread[1] );
    CloseHandle( hThread[2] );
 
    CloseHandle( g_hMutex );
    return 0;
}
 
DWORD WINAPI ThreadProc1(__in  LPVOID lpParameter)
{
    WaitForSingleObject(g_hMutex, INFINITE);//等待互斥量
    cout<<(int)lpParameter<<endl;
    ReleaseMutex(g_hMutex);//释放互斥量
    return 0;
}
 
DWORD WINAPI ThreadProc2(__in  LPVOID lpParameter)
{
    WaitForSingleObject(g_hMutex, INFINITE);//等待互斥量
    cout<<(int )lpParameter<<endl;
    ReleaseMutex(g_hMutex);//释放互斥量
    return 0;
}
 
DWORD WINAPI ThreadProc3(__in  LPVOID lpParameter)
{
    WaitForSingleObject( g_hMutex, INFINITE);//等待互斥量
    cout<<(int)lpParameter<<endl;
    ReleaseMutex(g_hMutex);//释放互斥量
    return 0;
}
jpg 改 rar 

window下线程同步之(Mutex(互斥器) )的更多相关文章

  1. window下线程同步之(Event Objects(事件))

    Event 方式是最具弹性的同步机制,因为他的状态完全由你去决定,不会像 Mutex 和 Semaphores 的状态会由类似:WaitForSingleObject 一类的函数的调用而改变,所以你可 ...

  2. window下线程同步之(Semaphores(信号量))

    HANDLE WINAPI CreateSemaphore( _In_opt_ LPSECURITY_ATTRIBUTES lpSemaphoreAttributes _In_ LONG lIniti ...

  3. window下线程同步之(原子锁)

    原子锁:当多个线程同时对同一资源进行操作时,由于线程间资源的抢占,会导致操作的结果丢失或者不是我们预期的结果. 比如:线程A对一个变量进行var++操作,线程B也执行var++操作,当线程A执行var ...

  4. window下线程同步之(Critical Sections(关键代码段、关键区域、临界区域)

    关键区域(CriticalSection) 临界区是为了确保同一个代码片段在同一时间只能被一个线程访问,与原子锁不同的是临界区是多条指令的锁定,而原子锁仅仅对单条操作指令有效;临界区和原子锁只能控制同 ...

  5. C#线程学习笔记六:线程同步--信号量和互斥体

    本笔记摘抄自:https://www.cnblogs.com/zhili/archive/2012/07/23/Mutex_And_Semaphore.html,记录一下学习过程以备后续查用.     ...

  6. Linux的线程同步对象:互斥量Mutex,读写锁,条件变量

        进程是Linux资源分配的对象,Linux会为进程分配虚拟内存(4G)和文件句柄等 资源,是一个静态的概念.线程是CPU调度的对象,是一个动态的概念.一个进程之中至少包含有一个或者多个线程.这 ...

  7. 线程同步方式之互斥量Mutex

    互斥量和临界区非常相似,只有拥有了互斥对象的线程才可以访问共享资源,而互斥对象只有一个,因此可以保证同一时刻有且仅有一个线程可以访问共享资源,达到线程同步的目的. 互斥量相对于临界区更为高级,可以对互 ...

  8. Linux下线程同步的几种方法

    Linux下提供了多种方式来处理线程同步,最常用的是互斥锁.条件变量和信号量. 一.互斥锁(mutex) 锁机制是同一时刻只允许一个线程执行一个关键部分的代码.  1. 初始化锁 int pthrea ...

  9. Linux/Unix 线程同步技术之互斥量(1)

    众所周知,互斥量(mutex)是同步线程对共享资源访问的技术,用来防止下面这种情况:线程A试图访问某个共享资源时,线程B正在对其进行修改,从而造成资源状态不一致.与之相关的一个术语临界区(critic ...

随机推荐

  1. 传统餐饮O2O支付体系成难题

    传统餐饮O2O支付体系成难题 网的数据化参考,使得门店运营更具科学性. 作为“易淘食”这样的订餐网站,主要依靠与餐厅分成 来获得利润.“根据每个餐厅合作情况不同,每一笔订单我们可获得5%-15%的佣金 ...

  2. css3 -- 自动生成序号(不使用JS,可任意排序)

    需求:一个table 需要在第一列生成序号:1.2.3.4.5......  并且自适应行数 不使用后台程序,开始考虑使用JS,但是一旦前台排序后,序号就乱了,最后采用CSS的一个计数器方法实现! & ...

  3. C++ namespace的用法

    //namesp.h namespace pers{     const int LEN = 40;     struct Person{         char fname[LEN];       ...

  4. interproscan 软件对序列进行GO 注释

    interproscan 软件实际上将对输入的查询序列和interpro 数据库中的序列去比对,将比对上的序列对应的GO信息作为查询序列的GO注释 在interpro 数据库中,每条蛋白质序列有一个唯 ...

  5. C# Http访问帮助类,支持get post请求文件下载 [

    using System; using System.Collections.Generic; using System.Collections.Specialized; using System.I ...

  6. C# asp.net中导出Excel表时总出现"只能在执行 Render() 的过程中调用 RegisterForEventValidation

    C# asp.net中导出Excel表时总出现"只能在执行 Render() 的过程中调用 RegisterForEventValidation 后台添加以下方法:/// <summa ...

  7. 在Unity中查找缺失的引用

    这篇博客是查找unity中缺失引用的一个简单简短的解决方案.你可以从GitHub上获取源码. 缺失引用 一个丢失引用与没有引用(在检视表显示“None”)是完全不同的概念.这些友各种原因造成,比如:把 ...

  8. scala中Map和Set

    scala中Set包含可变set和不可变Set,set的子类HashSet,各有一个扩展了可变和不可变的set特质.  可变set import scala.collection.mutable.Se ...

  9. Python爬虫-豆瓣电影 Top 250

    爬取的网页地址为:https://movie.douban.com/top250 打开网页后,可观察到:TOP250的电影被分成了10个页面来展示,每个页面有25个电影. 那么要爬取所有电影的信息,就 ...

  10. 【转】ZooKeeper学习第二期--Zookeeper命令操作

    一.Zookeeper的四字命令 Zookeeper支持某些特定的四字命令字母与其的交互.他们大多数是查询命令,用来获取Zookeeper服务的当前状态及相关信息.用户在客户端可以通过telnet或n ...